精英家教网 > 高中数学 > 题目详情
定义:函数f(x)与实数m的一种符号运算为:m*f(x)=f(x)[f(x+m)-f(x)],已知:f(x)=
1
2
x2-3x-
3
4
,g(x)=4*f(x)+
7
2
x2
(1)求g(x)的单调区间;
(2)若在x∈[0,2]上,g(x)>2a-3恒成立,试求实数a的范围.
考点:函数恒成立问题
专题:函数的性质及应用
分析:(1)根据定义求出函数g(x)的表达式,然后求函数的导数,即可求g(x)的单调区间;
(2)将不等式g(x)>2a-3恒成立,转化求g(x)的最小值即可得到结论.
解答: 解:(1)∵g(x)=4*f(x)+
7
2
x2
∴g(x)=2x3-
21
2
x2+9x+3,
∴g′(x)=6x2-21x+9=3(x-3)(2x-1),
由g′(x)>0得,x>3或x<
1
3

∴g(x)的单调递增区间是(-∞,
1
2
),(3,+∞),
令g′(x)<0⇒
1
2
<x<3
∴g(x)的单调递减区间(
1
2
,3).
(2)由 g(x)>2a-3对x∈[0,2]上恒成立得g(x)最小值>2a-3,
由(1)知g(x)最小值为-5
∴-5>2a-3,
即a<-1,
∴a∈(-∞,-1).
点评:本题主要考查函数单调性和导数之间的关系,将不等式恒成立转化为求函数的最值是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求由抛物线y2=4ax与过焦点的弦所围成的图形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={-1,0,1},对于数列{an}中,ai∈A(i=1,2,3,…,n).
(Ⅰ)若50项数列{an}满足
50
i=1
ai=-9
50
i=1
(ai-1)2=107
,则数列{an}中有多少项取值为零?(
n
i=1
ai=a1+a2+…+an , n∈N*

(Ⅱ)若各项非零数列{an}和新数列{bn}满足bi-bi-1=ai-1(i=2,3,…,n).
(ⅰ)若首项b1=0,末项bn=n-1,求证数列{bn}是等差数列;
(ⅱ)若首项b1=0,末项bn=0,记数列{bn}的前n项和为Sn,求Sn的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意正整数n,证明:2(
n+1
-1)<1+
1
2
+
1
3
+…+
1
n
<2
n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的方程为y2=4x.
(Ⅰ)写出焦点F的坐标和准线l的方程;
(Ⅱ)设过点F的直线l与抛物线C相交于A,B两点.问是否存在直线l,使得弦AB的中点为(1,1),若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
1
2
x2+ax+
e3
ex

(1)若x∈(
3
2
,+∞)
时,f(x)单调递增,求a的取值范围;
(2)讨论方程f(x)+|lnx|-ax-b=0的实数根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-1|.
(Ⅰ)解不等式f(x-1)+f(x+3)≥6;
(Ⅱ)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f(
b
a
)

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中有3个白球,3个红球和5个黑球.从中抽取3个球,若取得1个白球得1分,取得1个红球扣1分,取得1个黑球得0分.求所得分数ξ的概率分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

设圆x2+y2=a2+b2与双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)在第一象限的交点为P,若双曲线的左、右焦点分别为F1、F2,且tan∠PF2F1=
3
2
,则双曲线的离心率为
 

查看答案和解析>>

同步练习册答案