精英家教网 > 高中数学 > 题目详情
对于任意正整数n,证明:2(
n+1
-1)<1+
1
2
+
1
3
+…+
1
n
<2
n
考点:不等式的证明
专题:证明题,综合法
分析:先利用放缩法证明2(
k+1
-
k
1
k
<2(
k
-
k-1
)
,再利用叠加法,即可得出结论.
解答: 证明:∵2(
k+1
-
k
)=
2
k+1
+
k
2
2
k
=
1
k
2
k
+
k-1
=2(
k
-
k-1

∴2(
k+1
-
k
1
k
<2(
k
-
k-1
)

∴2(
2
-1)<1<2(1-0),
2(
3
-
2
)<
1
2
<2(
2
-1),

2(
n+1
-
n
)<
1
n
<2(
n
-
n-1

上面式子叠加即得结论2(
n+1
-1)<1+
1
2
+
1
3
+…+
1
n
<2
n
点评:本题考查不等式的证明,考查放缩法的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知方程x2+2x-a=0,
(1)若方程在x∈[-2,1]内只有一解,求a的取值范围;
(2)若方程在x∈[-2,1]内有两解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,曲线C的参数方程为
x=acosφ
y=bsinφ
(a>b>0,φ为参数),已知曲线C上的点M(1,
3
2
)对应的参数φ=
π
3

(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,若点A(ρ1,θ),B(ρ2,θ+
π
2
)在曲线C上,求
1
ρ
2
1
+
1
ρ
2
2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:
n
k=1
1
k2
5
3
,(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
ax2+x-a,x∈[
2
,2],其中a为实数.
(1)求函数的最大值g(a);
(2)若对于任意的非零实数a,不等式g(a)≥λg(
1
a
)恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)对任意x,y∈R均满足:f(x)+f(y)=2f(
x+y
2
)
,且f(0)=0,当x>0时,f(x)>0.
(1)判断并证明f(x)的奇偶性;
(2)判断并证明f(x)在R上的单调性;
(3)若f(1)=1,且不等式f(-k•2x)+f(9+4x)≥2对任意x∈[0,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:函数f(x)与实数m的一种符号运算为:m*f(x)=f(x)[f(x+m)-f(x)],已知:f(x)=
1
2
x2-3x-
3
4
,g(x)=4*f(x)+
7
2
x2
(1)求g(x)的单调区间;
(2)若在x∈[0,2]上,g(x)>2a-3恒成立,试求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2+Dx-6y+1=0上有两点P、Q关于直线x-y+4=0对称.
(1)求圆C的半径;
(2)若OP⊥OQ,O为坐标原点,求PQ方程;
(3)直线l:(2m-1)x-(m-1)y+8m-6=0被圆C截得弦长最短时,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=3cosxcosx的最小正周期是
 

查看答案和解析>>

同步练习册答案