精英家教网 > 高中数学 > 题目详情
设定义在R上的函数f(x)对任意x,y∈R均满足:f(x)+f(y)=2f(
x+y
2
)
,且f(0)=0,当x>0时,f(x)>0.
(1)判断并证明f(x)的奇偶性;
(2)判断并证明f(x)在R上的单调性;
(3)若f(1)=1,且不等式f(-k•2x)+f(9+4x)≥2对任意x∈[0,+∞)恒成立,求实数k的取值范围.
考点:抽象函数及其应用
专题:综合题,函数的性质及应用
分析:(1)由于f(0)=0,令y=-x即可判断f(x)的奇偶性;
(2)设x1<x2,依题意可证f(x2)-f(x1)=f(x2)+f(-x1)=2f(
x2-x1
2
)>0,从而可判断f(x)在R上为单调递增函数;
(3)依题意得,f(
9+4x-1
2
)≥f(
1+k•2x
2
),又f(x)在R上为单调递增函数,从而有
9+4x-1
2
1+k•2x
2
⇒k≤2x+
7
2x
对任意x∈[0,+∞)恒成立,利用基本不等式可求得h(x)=2x+
7
2x
的最小值,从而得到答案.
解答: 解:(1)f(x)为奇函数;下面给出证明:
∵f(0)=0,f(x)+f(y)=2f(
x+y
2
),
∴令y=-x得:f(x)+f(-x)=2f(0)=0,
∴f(-x)=-f(x),
∴f(x)为奇函数;
(2)设x1<x2,则x2-x1>0,
∴f(x2)-f(x1)=f(x2)+f(-x1)=2f(
x2-x1
2
),
∵x>0时,f(x)>0,而x2-x1>0,
x2-x1
2
>0,
∴2f(
x2-x1
2
)>0,
∴f(x2)>f(x1),
∴f(x)在R上为单调递增函数;
(3)∵f(1)=1,且不等式f(-k•2x)+f(9+4x)≥2对任意x∈[0,+∞)恒成立,
∴f(9+4x)-f(1)≥f(1)-f(-k•2x)=f(1)+f(k•2x),
即f(9+4x)+f(-1)≥f(1)+f(k•2x),
即2f(
9+4x-1
2
)≥2f(
1+k•2x
2
),
∴f(
9+4x-1
2
)≥f(
1+k•2x
2
),又f(x)在R上为单调递增函数,
9+4x-1
2
1+k•2x
2

∴k≤2x+
7
2x
对任意x∈[0,+∞)恒成立,
令h(x)=2x+
7
2x
,则h(x)≥2
7
(当且仅当x=log47时取等号),
∴h(x)min=2
7

∴k≤2
7
点评:本题考查抽象函数及其应用,着重考查函数的奇偶性与单调性的确定,考查等价转化思想与综合运算能力,考查基本不等式的应用,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,直线l的参数方程为
x=t+1
y=2t
(t为参数),曲线C的参数方程为
x=2tan2θ
y=2tanθ
(θ为参数),试求直线l与曲线C的普通方程,并求出它们的公共点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a|x|
ex-1
(a为常数).
(1)当a>0时,求f(x)的极值;
(2)设函数g(x)=x3-ax2+2,若x∈[-1,1]时,f(x)≤g(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

交管部门遵循公交优先的原则,在某路段开设了一条仅供车身长为10m的公共汽车行驶的专用车道,据交管部门收集的大量数据分析发现,该车道上行驶着的前后两辆公共汽车间的安全距离d(m)与车速v(km/h)之间满足二次函数关系d=f(v),现已知车速为15km/h时,安全距离为8m;车速为45km/h时,安全距离为38m;出现堵车状况时,两车安全距离为2m.
(1)试确定d关于v的函数关系式d=f(v);
(2)车速v(km/h)为多少时,单位时段内通过这条车道的公共汽车数量最多?最多是多少辆?

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意正整数n,证明:2(
n+1
-1)<1+
1
2
+
1
3
+…+
1
n
<2
n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+2x+a
x
,x∈[1,+∞)

(1)当a=4时,求函数f(x)的最小值;
(2)解关于x的不等式f(x)>a+3;
(3)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
1
2
x2+ax+
e3
ex

(1)若x∈(
3
2
,+∞)
时,f(x)单调递增,求a的取值范围;
(2)讨论方程f(x)+|lnx|-ax-b=0的实数根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+1nx
x

(1)求f(x)的最大值;
(2)若对所有x≥1都有f(x)≥
k
x+1
,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-4:坐标系与参数方程)
已知直线l的参数方程为
x=2t
y=1+2t
(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos2θ=sinθ.设直线l与曲线C交于A,B两点,则
OA
OB
=
 

查看答案和解析>>

同步练习册答案