精英家教网 > 高中数学 > 题目详情
已知抛物线C的方程为y2=4x.
(Ⅰ)写出焦点F的坐标和准线l的方程;
(Ⅱ)设过点F的直线l与抛物线C相交于A,B两点.问是否存在直线l,使得弦AB的中点为(1,1),若存在,求出直线l的方程;若不存在,请说明理由.
考点:抛物线的简单性质
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)根据抛物线方程求得p,则根据抛物线性质可求得抛物线的焦点F的坐标和准线l的方程;
(Ⅱ)利用点差法,结合弦中点的坐标求出斜率,利用点斜式,可得直线l的方程.
解答: 解:(Ⅰ)抛物线y2=4x的焦点在x轴上,且p=2
∴抛物线焦点坐标为(1,0),抛物线的准线方程是x=-1.
(Ⅱ)设A(x1,y1),B(x2,y2),则y12=4x1,y22=4x2
两式相减可得y12-y22=4x1-4x2
∴(y1+y2)(y1-y2)=4(x1-x2
∵弦AB的中点为(1,1),
∴y1+y2=2,
∴直线l的斜率为
y1-y2
x1-x2
=2,
∴直线l的方程为y-1=2(x-1),即2x-y-1=0.
点评:本小题主要考查抛物线的标准方程、抛物线的简单性质等基础知识,考查运算求解能力,考查数形结合思想.属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为了解学生的体能情况,抽取了一个学校的部分学生进行一分钟跳绳次数测试,将所得数据整理成统计图如图,已知图中从左到右各个小组的高度之比分别为1:3:4:2,最左边一组的频数为5,请根据以上信息和图形解决以下问题:
(1)参加这次测试的学生共有多少人?
(2)求第四小组的频率;
(3)若次数在75次以上(含75次)为达标,那么,学生的达标率是多少?
(4)在这次测试中,学生跳绳次数的中位数落在那个小组内?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2x+2cos(
π
2
-x)+a-2

(1)当a=1时,求函数f(x)在[-
π
6
6
]
上的值域;
(2)当a为何值时,方程f(x)=0在[0,2π)上有两个解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
ax2+x-a,x∈[
2
,2],其中a为实数.
(1)求函数的最大值g(a);
(2)若对于任意的非零实数a,不等式g(a)≥λg(
1
a
)恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2(a+1)x+2alnx(a>0).
(1)求f(x)的单调区间;
(2)若f(x)≤0在区间[1,e]上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:函数f(x)与实数m的一种符号运算为:m*f(x)=f(x)[f(x+m)-f(x)],已知:f(x)=
1
2
x2-3x-
3
4
,g(x)=4*f(x)+
7
2
x2
(1)求g(x)的单调区间;
(2)若在x∈[0,2]上,g(x)>2a-3恒成立,试求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科学生做)若函数f(x)对任意x1,x2∈D,都有|f(x1)-f(x2)|≤|x1-x2|成立,则称f(x)为D上的“收缩”函数
(1)判断函数f(x)=
1
4
x2+
1
2
x
在[-1,1]上是否是“收缩”函数,并说明理由;
(2)函数f(x)=
k
x+2
(k∈R)

    (i)讨论函数f(x)=
k
x+2
(k∈R)
在x∈[-1,+∞)的单调性,并用定义证明;
   (ii)是否存在k∈R,使得f(x)=
k
x+2
在[-1,+∞)上为“收缩”函数,若存在,求k的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M、N均在直线x=6上,圆弧C1的圆心是坐标原点O,半径为10,圆弧C2过点A(38,0).
(1)求圆弧C2的方程;
(2)曲线C上是否存在点P,满足PA=
39
PO?若存在,指出有几个这样的点;若不存在,请说明理由;
(3)已知直线l:x-my-21=0与曲线C交于E、F两点,当EF=38时,求坐标原点O到直线l的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高三年级有500名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图),现用分层抽样的方法选取x名学生参加某项课外活动,已知从身高在[160,170)的学生中选取9人,则x=
 

查看答案和解析>>

同步练习册答案