精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-2(a+1)x+2alnx(a>0).
(1)求f(x)的单调区间;
(2)若f(x)≤0在区间[1,e]上恒成立,求实数a的取值范围.
考点:函数恒成立问题
专题:函数的性质及应用
分析:(1)求函数的导数,利用函数单调性和导数之间的关系,即可求f(x)的单调区间;
(2)若f(x)≤0在区间[1,e]上恒成立,则只需求出f(x)的最大值即可,求实数a的取值范围.
解答: 解:(1)∵f(x)=x2-2(a+1)x+2alnx(a>0).
f′(x)=
2x2-2(a+1)x+2a
x
=
2(x-1)(x-a)
x
(x>0)

由f'(x)=0得x1=a,x2=1,
当0<a<1时,在x∈(0,a)或x∈(1,+∞)时f'(x)>0,
在x∈(a,1)时f'(x)<0,
∴f(x)的单调增区间是(0,a)和(1,+∞),单调减区间是(a,1);
当a=1时,在x∈(0,+∞)时f'(x)≥0,
∴f(x)的单调增区间是(0,+∞);
当a>1时,在x∈(0,1)或x∈(a,+∞)时f'(x)>0,
在x∈(1,a)时f'(x)<0.
∴f(x)的单调增区间是(0,1)和(a,+∞),单调减区间是(1,a).
(2)由(1)可知f(x)在区间[1,e]上只可能有极小值点,
∴f(x)在区间[1,e]上的最大值在区间的端点处取到,
即有f(1)=1-2(a+1)≤0且f(e)=e2-2(a+1)e+2a≤0,
解得a≥
e2-2e
2e-2

即实数a的取值范围是a≥
e2-2e
2e-2
点评:本题主要考查函数单调性和导数之间的关系,以及不等式恒成立问题,将不等式恒成立转化为求函数的最值是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=|2x+1|+|2x-3|.
(Ⅰ)求不等式f(x)≤6的解集;
(Ⅱ)若关于x的不等式f(x)-log2(a2-3a)>2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合P={x|x2-x-6<0},Q={x|x-a≥0}
(1)若P⊆Q,求实数a的取值范围;
(2)若P∩Q=∅,求实数a的取值范围;
(3)若P∩Q={x|0≤x<3},求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程:log4(3x+2)+log0.25(2x-2)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意正整数k,证明:2(
k+1
-
k
1
k
<2(
k
-
k-1
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的方程为y2=4x.
(Ⅰ)写出焦点F的坐标和准线l的方程;
(Ⅱ)设过点F的直线l与抛物线C相交于A,B两点.问是否存在直线l,使得弦AB的中点为(1,1),若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0.9<a<1,试比较a,aaaaa的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

记者在街上随机抽取10人调查其在一个月内接到的打扰性短信息次数,得统计的茎叶图如下:
(Ⅰ)计算样本的平均数及方差;
(Ⅱ)在这10个样本中,现从低于20次的人中随机抽取2人,求2人中至少有1人接到打扰性短信息低于10次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

将一个长方体沿相邻三个面的对角线截出一个棱锥,则棱锥的体积与剩下的几何体的体积的比是
 

查看答案和解析>>

同步练习册答案