| A. | 1≤m2+n2≤4 且 0≤m+n≤2 | B. | 1≤m2+n2≤4且 1≤n-m≤2 | ||
| C. | 2≤m2+n2≤4 且 1≤m+n≤2 | D. | 2≤m2+n2≤4且 0≤n-m≤2 |
分析 求出约束条件,画出可行域,然后利用目标函数的几何意义求解即可.
解答 解:点(1,1)在不等式组$\left\{\begin{array}{l}{mx+ny≤2}\\{ny-mx≤2}\\{ny≥1}\end{array}\right.$表示的平面区域内,
可得$\left\{\begin{array}{l}{m+n≤2}\\{n-m≤2}\\{n≥1}\end{array}\right.$,
不等式组表示的可行域如图:![]()
m2+n2的几何意义是可行域内的点到原点距离的平方,
显然(0,1)到原点的距离最小,最小值为1,
(0,2)到原点的距离最大,最大值为4,
则1≤m2+n2≤4,0≤m+n≤2,
故选:A
点评 本题考查线性规划的应用,数形结合的应用,基本知识的考查.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | V=$\frac{1}{3}$abc (a,b,c为底边边长) | |
| B. | V=$\frac{1}{3}$Sh(S为地面面积,h为四面体的高) | |
| C. | V=$\frac{1}{3}$(ab+bc+ac)h(a,b,c为底边边长,h为四面体的高) | |
| D. | V=$\frac{1}{3}$(S1+S2+S3+S4)r(其中S1,S2,S3,S4分别为四面体四个面的面积,r为四面体内切球的半径) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [3,+∞) | B. | (0,3] | C. | [$\frac{1}{2}$,3] | D. | (0,$\frac{1}{2}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com