精英家教网 > 高中数学 > 题目详情
18.已知点P(1,1)在关于x,y的不等式组$\left\{\begin{array}{l}{mx+ny≤2}\\{ny-mx≤2}\\{ny≥1}\end{array}\right.$表示的平面区域内,则(  )
A.1≤m2+n2≤4 且 0≤m+n≤2B.1≤m2+n2≤4且  1≤n-m≤2
C.2≤m2+n2≤4 且  1≤m+n≤2D.2≤m2+n2≤4且 0≤n-m≤2

分析 求出约束条件,画出可行域,然后利用目标函数的几何意义求解即可.

解答 解:点(1,1)在不等式组$\left\{\begin{array}{l}{mx+ny≤2}\\{ny-mx≤2}\\{ny≥1}\end{array}\right.$表示的平面区域内,
可得$\left\{\begin{array}{l}{m+n≤2}\\{n-m≤2}\\{n≥1}\end{array}\right.$,
不等式组表示的可行域如图:

m2+n2的几何意义是可行域内的点到原点距离的平方,
显然(0,1)到原点的距离最小,最小值为1,
(0,2)到原点的距离最大,最大值为4,
则1≤m2+n2≤4,0≤m+n≤2,
故选:A

点评 本题考查线性规划的应用,数形结合的应用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.下列四个命题:
①两直线平行的充要条件是它们的斜率相等;
②圆(x+2)2+(y+1)2=4与直线x-2y=0相交,所得弦长为4;
③平面内到两定点的距离之和等于常数的点的轨迹是椭圆;
④抛物线上任一点M到其焦点的距离都等于点M到其准线的距离.
其中,正确命题的序号为②④.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知x>0,y>0,且$\frac{1}{x}$+$\frac{2}{y}$=1,若x+2y>a2+8a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数列{an}中,若an+1=$\frac{n+2}{n}$an,a1=2,则数列{$\frac{1}{{a}_{n}}$}的前2016项和为$\frac{2016}{2017}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=xlnx.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求证:f(x)≥x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.sin(-10°)cos160°-sin80°sin(200°)=(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.三角形的面积为S=$\frac{1}{2}$(a+b+c)r,a,b,c为三边的边长,r为三角形内切圆半径,利用类比推理可得出四面体的体积为(  )
A.V=$\frac{1}{3}$abc (a,b,c为底边边长)
B.V=$\frac{1}{3}$Sh(S为地面面积,h为四面体的高)
C.V=$\frac{1}{3}$(ab+bc+ac)h(a,b,c为底边边长,h为四面体的高)
D.V=$\frac{1}{3}$(S1+S2+S3+S4)r(其中S1,S2,S3,S4分别为四面体四个面的面积,r为四面体内切球的半径)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=x2-2x,g(x)=ax+2(a>0),且对任意的x1∈[-1,2],都存在x2∈[-1,2],使f(x2)=g(x1),则实数a的取值范围是(  )
A.[3,+∞)B.(0,3]C.[$\frac{1}{2}$,3]D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.曲线y=x3+1在点P(1,2)处的切线方程为(  )
A.3x-y+1=0B.3x-y-1=0C.3x+y-1=0D.3x+y-5=0

查看答案和解析>>

同步练习册答案