分析 a1=2,an+1=$\frac{n+2}{n}$an,可得$\frac{{a}_{n+1}}{{a}_{n}}=\frac{n+2}{n}$.利用“累乘求积”即可得出.
解答 解:∵a1=2,an+1=$\frac{n+2}{n}$an,可得$\frac{{a}_{n+1}}{{a}_{n}}=\frac{n+2}{n}$.
∴an=$\frac{{a}_{n}}{{a}_{n-1}}$•$\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{2}}{{a}_{1}}$•a1
=$\frac{n+1}{n-1}$•$\frac{n}{n-2}$•$\frac{n-1}{n-3}$…•$\frac{4}{2}$•$\frac{3}{1}$•2
=n(n+1).
∴$\frac{1}{{a}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
则数列{$\frac{1}{{a}_{n}}$}的前2016项和为:1$-\frac{1}{2}$$+\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{2016}$$-\frac{1}{2017}$=$\frac{2016}{2017}$.
故答案为:$\frac{2016}{2017}$.
点评 本题考查了递推关系、“累乘求积”的应用,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | an=$\frac{2n}{\frac{7}{9}(1{0}^{n}-1)}$ | B. | an=$\frac{18n-9}{7(1{0}^{n}-1)}$ | C. | an=$\frac{2n-1}{7(1{0}^{n}-1)}$ | D. | an=$\frac{2n-1}{\frac{7}{8}({8}^{n}-1)}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{1009}$ | B. | $\frac{1}{2015}$ | C. | $\frac{1}{2016}$ | D. | $\frac{1}{2017}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1≤m2+n2≤4 且 0≤m+n≤2 | B. | 1≤m2+n2≤4且 1≤n-m≤2 | ||
| C. | 2≤m2+n2≤4 且 1≤m+n≤2 | D. | 2≤m2+n2≤4且 0≤n-m≤2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com