精英家教网 > 高中数学 > 题目详情

在△ABC中,设角A,B,C的对边分别为a,b,c,且
(1)求角A的大小;
(2)若,求边c的大小.

(1);(2)

解析试题分析:(1)解三角形问题,一般利用正弦定理或余弦定理将边统一为角或将角统一为边,如用正弦定理将化为角也可用余弦定理将化为边,在统一为角后,再利用诱导公式将三个角化为两个角,结合两角和与差公式将两个角化为所求角;在统一为边后,再利用余弦定理或勾股定理求对应角,(2)结合(1)知,所求问题为已知一角两边,求第三边,显然用余弦定理比较直接.
试题解析:(1)用正弦定理,由
   2分

   4分
   6分
   8分
(2)用余弦定理,得


  12分
    14分
考点:解三角形,正弦定理,余弦定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数最大值和最小正周期;
(2)设内角所对的边分别为,且.若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在中,已知,边上的一点,

(Ⅰ)求的值;
(Ⅱ)求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a,b,c分别为△ABC三个内角A,B,C的对边,且
(Ⅰ)求B;
(2)若,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图中,已知点边上,满足.

(1)求的长;
(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,BC=a,AC=b,a、b是方程的两个根,且,求△ABC的面积及AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.
(1)求角A的大小;(2)若sinB·sinC=sin2A,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角的对边分别为,满足 .
(Ⅰ)求角C的大小;
(Ⅱ)若,且,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在△ABC中,内角A,B,C所对的边分别为a,b,c,且acos C+c=b.
(1)求角A;
(2)若a=1,且c-2b=1,求角B.

查看答案和解析>>

同步练习册答案