精英家教网 > 高中数学 > 题目详情
一束光线从y轴上点A(0,1)出发,经过x轴上点C反射后经过点 B(3,3),则光线从A点到B点经过的路线长是
 
考点:与直线关于点、直线对称的直线方程,两点间距离公式的应用
专题:直线与圆
分析:根据反射定律,点A(0,1)关于x轴的对称点M(0,-1)在反射光线所在的直线上,故光线从A点到B点经过的路线长是|MB|,利用两点间的距离公式求得结果.
解答: 解:由题意可得,点A(0,1)关于x轴的对称点M(0,-1)在反射光线所在的直线上,
故光线从A点到B点经过的路线长是|MB|=
(3-0)2+(3+1)2
=5,
故答案为:5.
点评:本题主要考查光线的反射定律的应用,求一个点关于某直线的对称点的坐标的方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆O的方程为x2+y2=3,且P(x,y)是圆O上任意一点,则
x+y-5
x-2
的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若x1和x2(x1<x2)分别是一元二次方程3x2+4x-1=0的两根
求:(1)x1-x2
(2)(x1-2)(x2-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+2x+c(a,c∈N)满足①f(1)=5;②6<f(2)<11
(1)求f(x)的解析式;
(2)若对任意实数x∈[
1
2
3
2
]
,都有f(x)-2m≤1成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

用描述法表示平面直角坐标系中第三象限的点形成的集合
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足不等式
2x-y≥0
x+y-4≥0
x≤3
,则
2x3+y3
x2y
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线y=2x2的一条切线l与直线x+4y-8=0垂直,则切线l的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知圆C的参数方程为
x=cosα
y=1+sinα
(α为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ=1,(ρ≥0,0≤θ<2π)则直线l与圆C的交点的极坐标为
 

(2)已知f(x)=|x|+|x-1|,若g(x)=f(x)-a的零点个数不为0,则a的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,A(0,2),B(4,4),
OM
=t1
OA
+t2
OB

(1)求点M在第二象限或第三象限的充要条件;
(2)若t1=a2,求
OM
AB
且△ABM的面积为12时a的值.

查看答案和解析>>

同步练习册答案