精英家教网 > 高中数学 > 题目详情
2.已知向量$\overrightarrow{a}$=(3,-1),向量$\overrightarrow{b}$=(-1,2),则(2$\overrightarrow{a}+\overrightarrow{b}$)•$\overrightarrow{a}$=(  )
A.15B.14C.5D.-5

分析 根据向量的坐标运算和向量的数量积计算即可

解答 解:向量$\overrightarrow{a}$=(3,-1),向量$\overrightarrow{b}$=(-1,2),
则2$\overrightarrow{a}+\overrightarrow{b}$=2(3,-1)+(-1,2)=(6,-2)+(-1,2)=(6-1,-2+2)=(5,0),
则(2$\overrightarrow{a}+\overrightarrow{b}$)•$\overrightarrow{a}$=(5,0)•(3,-1)=5×3+0×(-1)=15,
故选:A

点评 本题考查了向量的坐标运算和向量的数量积的运算,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知正项数列{an}的首项a1=1,前n项和Sn满足an=$\sqrt{S_n}+\sqrt{{S_{n-1}}}$(n≥2)
(1)求证:$\left\{{\sqrt{S_n}\left.{\;}\right\}}$为等差数列,并求数列{an}的通项公式.
(2)是否存在实数λ,使得数列$\left\{{\frac{S_n}{{λ+{a_n}}}}\right\}$成等差数列?若存在,求出λ的值和该数列前n项的和;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|x+a|.
(1)若a=2,解关于x的不等式f(x)+f(x-3)≥5;
(2)若关于x的不等式f(x)-f(x+2)+4≥|1-3m|恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.关于x的方程x3-ax+2=0有三个不同实数解,则实数a的取值范围是(  )
A.(2,+∞)B.(3,+∞)C.(0,3 )D.(-∞,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列说法正确的是(  )
A.已知购买一张彩票中奖的概率为$\frac{1}{1000}$,则购买1000张这种彩票一定能中奖
B.互斥事件一定是对立事件
C.如图,直线l是变量x和y的线性回归方程,则变量x和y相关系数在-1到0之间
D.若样本x1,x2,…xn的方差是4,则x1-1,x2-1,…xn-1的方差是3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若复数z满足z-2i=-i•z,则z=(  )
A.-1+iB.1-iC.1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据如表:根据表中数据得到${K^2}=\frac{{775×{{(20×450-5×300)}^2}}}{25×750×320×455}$≈15.968,因为K2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为(  )
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
A.0.1B.0.05C.0.01D.0.001

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.4sin15°cos75°-2等于(  )
A.1B.-1C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:
喜欢甜品不喜欢甜品合 计
南方学生602080
北方学生101020
合 计7030100
根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
P(K2≥k00.1000.0500.010
k02.7063.8416.635
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

同步练习册答案