精英家教网 > 高中数学 > 题目详情
20.已知不等式2x+4$\sqrt{xy}$≤a(x+y)对任意正数x,y都成立,求实数a的取值范围.

分析 由题意化简可得a≥$\frac{2x+4\sqrt{xy}}{x+y}$=$\frac{2+4\sqrt{\frac{y}{x}}}{1+\frac{y}{x}}$,令t=$\sqrt{\frac{y}{x}}$,t>0;从而可得$\frac{2+4\sqrt{\frac{y}{x}}}{1+\frac{y}{x}}$=2•$\frac{1+2t}{1+{t}^{2}}$,再令1+2t=m,则2•$\frac{1+2t}{1+{t}^{2}}$=2•$\frac{m}{1+(\frac{m-1}{2})^{2}}$=2•$\frac{4}{m+\frac{5}{m}-2}$,从而利用基本不等式求得.

解答 解:∵x>0,y>0,2x+4$\sqrt{xy}$≤a(x+y),
∴a≥$\frac{2x+4\sqrt{xy}}{x+y}$=$\frac{2+4\sqrt{\frac{y}{x}}}{1+\frac{y}{x}}$,
令t=$\sqrt{\frac{y}{x}}$,t>0;
则$\frac{2+4\sqrt{\frac{y}{x}}}{1+\frac{y}{x}}$=$\frac{2+4t}{1+{t}^{2}}$=2•$\frac{1+2t}{1+{t}^{2}}$,
令1+2t=m,则t=$\frac{m-1}{2}$,m>1;
2•$\frac{1+2t}{1+{t}^{2}}$=2•$\frac{m}{1+(\frac{m-1}{2})^{2}}$=2•$\frac{4}{m+\frac{5}{m}-2}$,
∵m+$\frac{5}{m}$≥2$\sqrt{5}$,(当且仅当m=$\sqrt{5}$时,等号成立);
故(2•$\frac{4}{m+\frac{5}{m}-2}$)max=2•$\frac{4}{2\sqrt{5}-2}$=$\sqrt{5}$+1,
故a≥$\sqrt{5}$+1.

点评 本题考查了恒成立问题的应用及基本不等式的应用,同时考查了换元法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.每逢节假日,在微信好友群发红包逐渐成为一种时尚,2016年春节期间,小张在自己的微信校友群,向在线的甲、乙、丙、丁四位校友随机发放红包,发放的规则为:每次发放1个,每个人抢到的概率相同.
(1)若小张随机发放了3个红包,求甲至少得到1个红包的概率;
(2)小张在丁离线后随机发放了3个红包,其中2个红包中各有5元,1个红包中有10元,记乙所得红包的总钱数为X元,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知定义在R上的函数f(x)满足f(x)=2f(x+2),当x∈[0,2)时,f(x)=x2-2x.若x∈[4,6)时,不等式f(x)≥$\frac{t}{4}$-$\frac{1}{2t}$恒成立,则t的取值范围为(  )
A.[-2,0)∪[1,+∞)B.(-∞,2]∪(0,1]C.[-2,0)∪(0,1)D.[-2,0)∪(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.抛掷两颗质地均匀骰子,向上一面的点数之和为X,则X的期望E(X)=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1、F2,点A是椭圆M与圆C:x2+(y-2$\sqrt{2}$b)2=$\frac{4}{9}$m2在第一象限的交点,且点A到F2的距离等于$\frac{1}{3}$m,若椭圆M上一动点到点F1与到点C的距离之差的最大值为2a-m,则椭圆M的离心率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知点F1,F2分别为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,且椭圆C的短轴长为2,点P为椭圆上任意一点,点P到焦点F2的距离的最大值为$\sqrt{2}$+1.
(1)求椭圆C的标准方程;
(2)若动直线l与椭圆C有且只有一个公共点,则在x轴上是否存在两个定点,使它们到直线l的距离之积为1?若存在,请求出这两个定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,在长方体ABCD-A1B1C1D1中,E,F分别是棱AA1和棱CC1的中点.求证:EB1∥DF,ED∥B1F.(提示:设G是DD1的中点,分别连接EG,GC1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数y=cosx[cosx-cos(x+$\frac{π}{3}$)].求
(1)该函数的周期;
(2)单调递减区间;
(3)最大值和最小值,并写出求得最值时的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.化简:$\frac{1}{cos2θ}$-tanθtan2θ=1.

查看答案和解析>>

同步练习册答案