精英家教网 > 高中数学 > 题目详情
8.已知点A是定圆M所在平面上的一定点,点P是圆M上的动点,若线段PA的垂直平分线交直线PM于点Q,则点Q的轨迹可能是:①椭圆;②双曲线;③抛物线;④圆;⑤直线;⑥一个点.其中正确命题的序号是①②④⑥.(填上你认为所有正确命题的序号)

分析 对点A分类讨论:若点A在⊙M的内部,且与圆心不重合;若点A与⊙M的圆心M重合;若点A在⊙M上;若点A在⊙M的外部.即可判断出正确答案.

解答 解:若点A在⊙M的内部,且与圆心不重合,则其轨迹为椭圆;
若点A与⊙M的圆心M重合,则其轨迹为圆;
若点A在⊙M上,则其轨迹为圆心M;
若点A在⊙M的外部,则其轨迹为双曲线.
综上可得:只有①②④⑥正确,
故答案为:①②④⑥.

点评 本题考查了圆锥曲线的定义与性质、分类讨论思想方法,考查了推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若a<b<0,则下列结论中正确的是(  )
A.a2<b2B.ab<b2C.($\frac{1}{2}$)a<($\frac{1}{2}$)bD.$\frac{b}{a}$+$\frac{a}{b}$>2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设等差数列{an}的前n项和为Sn,a3+a5=26,S4=28,则a10的值为37.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.双曲线$\frac{{x}^{2}}{4}$-y2=1的离心率为(  )
A.$\frac{5}{4}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{3}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},0<x≤4}\\{|x-6|,x>4}\end{array}\right.$,若方程f(x)=kx+1有三个不同的实数根,则实数k的取值范围是(  )
A.(-$\frac{1}{6}$,$\frac{1}{4}$)B.(-∞,-$\frac{1}{6}$)∪($\frac{1}{4}$,+∞)C.[-$\frac{1}{6}$,$\frac{1}{4}$)D.(-$\frac{1}{6}$,$\frac{1}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ex(sinx+cosx)+a(a为常数).
(Ⅰ)已知a=-3,求曲线y=f(x)在(0,f(0))处的切线方程;
(Ⅱ)当0≤x≤π时,求f(x)的值域;
(Ⅲ)设g(x)=(a2-a+10)ex,若存在x1,x2∈[0,π],使得|f(x1)-g(x2)|<13-e${\;}^{\frac{π}{2}}$成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)是定义在(0,+∞)上的可导函数,且f(x)>0,f(x)+f′(x)<0
(Ⅰ)讨论函数F(x)=exf(x)的单调性并判断ee-2f(e)<f(2)是否成立?
(Ⅱ)设0<x<1,比较xf(x)与$\frac{1}{x}$f($\frac{1}{x}$)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,内角A,B,C所对的边分别为a,b,c,且asinA+bsinB-csinC=bsinA.
(Ⅰ)求∠C的度数;
(Ⅱ)若c=2,求AB边上的高CD的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.问题:①某地区10000名中小学生,其中高中生2000名,初中生4500名,小学生3500名,现从中抽取容量为200的样本;②从1002件同一生产线生产的产品中抽取20件产品进行质量检查.方法:Ⅰ、随机抽样法Ⅱ、分层抽样法Ⅲ、系统抽样法.其中问题与方法配对较适宜的是(  )
A.①Ⅰ,②ⅡB.①Ⅲ,②ⅠC.①Ⅱ,②ⅢD.①Ⅲ,②Ⅱ

查看答案和解析>>

同步练习册答案