精英家教网 > 高中数学 > 题目详情
4.已知复数z=1-i(i为虚数单位),且$\frac{1+ai}{z}$+1是纯虚数,则实数a的值为(  )
A.-1B.-3C.3D.1

分析 直接利用复数代数形式的乘除运算化简,然后由实部等于0且虚部不等于得答案.

解答 解:∵z=1-i,
由$\frac{1+ai}{1-i}+1$=$\frac{(1+ai)(1+i)}{(1-i)(1+i)}+1$=$\frac{1-a+(a+1)i}{2}$+1=($\frac{1-a}{2}+1$)+(1+a)i是纯虚数,
得$\left\{\begin{array}{l}{\frac{1-a}{2}+1=0}\\{a+1≠0}\end{array}\right.$,
解得:a=3.
故选:C.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知各项均不为0的等差数列{an}前n项和为Sn,满足S4=2a5,a1a2=a4,数列{bn}满足bn+1=2bn,b1=2.
(1)求数列{an},{bn}的通项公式;
(2)设cn=$\frac{{{a_n}{b_n}}}{2}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一个顶点为A(2,0),离心率为$\frac{{\sqrt{2}}}{2}$,直线y=k(x-1)与椭圆C交于不同的两点 M,N.
(1)求椭圆C的方程,并求其焦点坐标;
(2)当△AMN的面积为$\frac{{\sqrt{10}}}{3}$时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在四边形ABCD中,$\overrightarrow{AC}$=(2,3),$\overrightarrow{BD}$=(6,-4),则该四边形的面积为(  )
A.2$\sqrt{13}$B.13C.$\sqrt{13}$D.26

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线y2=px(p>0)与直线y=-x-1相切.
(1)求抛物线标准方程,及其准线方程;
(2)若P、Q是抛物线上相异的两点,且P、Q的中点在直线x=1上,试证:线段PQ的垂直平分线恒过定点T.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=2cos(ωx+$\frac{π}{4}$ω)+1在(0,$\frac{π}{8}$)上是减函数,则ω的最大值为(  )
A.12B.10C.8D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow a$=(k,6)与向量$\overrightarrow b$=(3,-4)垂直,若$\overrightarrow c$=(x,y),(x>0,且|${\overrightarrow c}$|=$\sqrt{65}})$,向量$\overrightarrow a$+$\overrightarrow c$,在向量$\overrightarrow b$方向上的投影为1,则向量$\overrightarrow c$的坐标为(7,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.中南大学有南北两个校区,教授们授课有时需开车往返两个校区,设两校区之间开车单程所需时间为T,一般情况下T只与道路畅通状况有关,通过随机抽取100次教授们开车单程所需时间进行统计,统计结果如表:
T(分钟)25303540
频数(次)20304010
(Ⅰ)若以样本估计总体,视频率为相应概率,求随机变量T的分布列与数学期望ET;
(Ⅱ)若刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=-2x2+3x(0<x≤2)的值域是(  )
A.$[{-2,\frac{9}{8}}]$B.$({-∞,\frac{9}{8}}]$C.$({0,\frac{9}{8}}]$D.$[{\frac{9}{8},+∞})$

查看答案和解析>>

同步练习册答案