精英家教网 > 高中数学 > 题目详情
14.已知各项均不为0的等差数列{an}前n项和为Sn,满足S4=2a5,a1a2=a4,数列{bn}满足bn+1=2bn,b1=2.
(1)求数列{an},{bn}的通项公式;
(2)设cn=$\frac{{{a_n}{b_n}}}{2}$,求数列{cn}的前n项和Tn

分析 (1)设等差数列{an}的公差为d,由S4=2a5,a1a2=a4,可得4a1+6d=2(a1+4d),a1(a1+d)=a1+3d,解得a1,d,即可得出.利用等比数列的通项公式即可得出bn
(2)${c_n}=\frac{{{a_n}{b_n}}}{2}=n{2^n}$,利用“错位相减法”与等比数列的求和公式即可得出.

解答 解:(1)设等差数列{an}的公差为d,∵S4=2a5,a1a2=a4
∴4a1+6d=2(a1+4d),a1(a1+d)=a1+3d,解得a1=2,d=2.
则an=2+2(n-1)=2n.
由数列{bn}满足bn+1=2bn,b1=2.
∴数列{bn}是等比数列,公比为2.
${b_n}={2^n}$.
(2)${c_n}=\frac{{{a_n}{b_n}}}{2}=n{2^n}$,
则${T_n}=1•{2^1}+2•{2^2}+3•{2^3}+…+n{2^n}$,
$2{T_n}=1•{2^2}+2•{2^3}+3•{2^4}+…+n{2^{n+1}}$,
两式相减得$-{T_n}=1•{2^1}+1•{2^2}+1•{2^3}+…+{2^n}-n{2^{n+1}}$=$\frac{2({2}^{n}-1)}{2-1}$-n•2n+1=(1-n)•2n+1-2,
整理得Tn=(n-1)•2n+1+2.

点评 本题考查了等差数列与等比数列的通项公式及其求和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知圆C1:(x-2$\sqrt{3}$)2+(y-1)2=4,直线C2的参数方程为$\left\{\begin{array}{l}{x=-2+\sqrt{3}t}\\{y=-\sqrt{3}}+t\end{array}\right.$(t≠0),以坐标原点O为极点,x轴的正半轴为极轴建立坐标系,两坐标系取相同单位.
(1)求C1,C2的极坐标方程;
(2)设C2向左平移1个单位后与C1的交点为M,N,求MN的中点到直线C3的极坐标方程θ=$\frac{π}{3}$的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将1.5${\;}^{\frac{1}{3}}$,1.7${\;}^{\frac{1}{3}}$,1按照由小到大的顺序排列为1<1.5${\;}^{\frac{1}{3}}$<1.7${\;}^{\frac{1}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.$\frac{{sin(π-α)cos(2π-α)tan(-α+\frac{3}{2}π)}}{cot(-α-π)sin(-π+α)}$=cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.5 个人站成一排,甲乙两人必须站在一起的不同站法有(  )
A.12 种B.24 种C.48 种D.60 种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知全集U=R,若集合M={0,1,$\frac{π}{2}$},N={y|y=cosx,x∈M},则M与N的关系用韦恩(Venn)图可以表示为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求函数y=tan($\frac{x}{2}$+$\frac{π}{3}$)的定义域和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在长方体ABCD-A1B1C1D1中,B1D与平面A1BC1交于H点,E是DD1的中点,$\overrightarrow{BF}=3\overrightarrow{FD}$.
(1)求证:EF∥平面A1BC1
(2)证明:H为三角形A1BC1的重心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数z=1-i(i为虚数单位),且$\frac{1+ai}{z}$+1是纯虚数,则实数a的值为(  )
A.-1B.-3C.3D.1

查看答案和解析>>

同步练习册答案