精英家教网 > 高中数学 > 题目详情
9.5 个人站成一排,甲乙两人必须站在一起的不同站法有(  )
A.12 种B.24 种C.48 种D.60 种

分析 5人排成一排,其中甲、乙两人必须排在一起,对于相邻的问题,一般用捆绑法,首先把甲和乙看做一个元素,使得它与另外4个元素排列,再者甲和乙之间还有一个排列,根据分步计数原理得到结果.

解答 解:∵5人排成一排,其中甲、乙两人必须排在一起,
∴首先把甲和乙看做一个元素,使得它与另外4个元素排列,
再者甲和乙之间还有一个排列,
共有A44A22=48,
故选C.

点评 本题考查排列、组合及简单计数问题,考查相邻问题,是一个比较简单的题目,这种题目一般有限制条件,首先排列有限制条件的元素.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{(2-a)x+1(x<1)}\\{{a}^{x}(x≥1)}\end{array}\right.$在(-∞,+∞)上单调递增,则实数a的取值范围是[$\frac{3}{2}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,两圆相交于A,B两点,P为BA延长线上任意一点,从P引两圆的割线PCD,PFE.
(Ⅰ)求证:C,D,E,F四点共圆;
(Ⅱ)若PF=EF,CD=2PC,求PD与PE的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示,OA=1,在以O为圆心,以OA为半径的半圆弧上随机取一点B,则△AOB的面积小于$\frac{1}{4}$的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩,列出如下所示2×2列联表:
数学成绩
物理成绩
 优秀不优秀合计
优秀527
不优秀11213
合计61420
(1)根据题中表格的数据计算,你有多少的把握认为学生的数学成绩与物理成绩之间有关系?
(2)若按下面的方法从这20人(序号1,2,3,…,20)中抽取1人来了解有关情况:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号.
试求:①抽到12号的概率;②抽到“无效序号(序号大于20)”的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知各项均不为0的等差数列{an}前n项和为Sn,满足S4=2a5,a1a2=a4,数列{bn}满足bn+1=2bn,b1=2.
(1)求数列{an},{bn}的通项公式;
(2)设cn=$\frac{{{a_n}{b_n}}}{2}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.连掷两次骰子得到点数分别为m和n,记向量$\overrightarrow a$=(m,n),向量$\overrightarrow b$=(1,-1)
(1)记$\overrightarrow a$⊥$\overrightarrow b$为事件A,求事件A发生的概率;
(2)若$\overrightarrow a$与$\overrightarrow b$的夹角为θ,记θ∈(0,$\frac{π}{2}$)为事件B,求事件B发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知正三棱柱ABC-A1B1C1的底面边长为2,高为5,则一质点自A点出发,沿着三棱柱的侧面绕行一周到达点A1的最短路线的长为(  )
A.10B.$\sqrt{41}$C.6D.$\sqrt{61}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线y2=px(p>0)与直线y=-x-1相切.
(1)求抛物线标准方程,及其准线方程;
(2)若P、Q是抛物线上相异的两点,且P、Q的中点在直线x=1上,试证:线段PQ的垂直平分线恒过定点T.

查看答案和解析>>

同步练习册答案