精英家教网 > 高中数学 > 题目详情
20.如图,两圆相交于A,B两点,P为BA延长线上任意一点,从P引两圆的割线PCD,PFE.
(Ⅰ)求证:C,D,E,F四点共圆;
(Ⅱ)若PF=EF,CD=2PC,求PD与PE的比值.

分析 (Ⅰ)证明△PCF∽△PED,得出∠D=∠PEC,即可证明:C,D,E,F四点共圆;
(Ⅱ)利用PF=EF,CD=2PC,PC•PD=PF•PE,得出3PC2=2PF2,即可求PD与PE的比值.

解答 (Ⅰ)证明:连接DE,CF,则
由割线定理得PA•PB=PC•PD=PF•PE,
∴$\frac{PC}{PF}=\frac{PE}{PD}$,
∵∠FPC=∠DPE,
∴△PCF∽△PED,
∴∠D=∠PEC,
∴C,D,E,F四点共圆;
(Ⅱ)解:∵PF=EF,CD=2PC,PC•PD=PF•PE,
∴3PC2=2PF2
∴PC=$\frac{\sqrt{6}}{3}$PF,PD=3PC=$\sqrt{6}$PF=$\frac{\sqrt{6}}{2}$PE,
∴PD与PE的比值为$\frac{\sqrt{6}}{2}$.

点评 本题考查四点共圆的证明,考查割线定理的运用,考查三角形相似的判定与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设A={x|$\frac{1}{1-x}$≥1},B={x|x2+2x-3>0},则(∁RA)∩B=(  )
A.[0,1)B.(-∞,-3)C.D.(-∞,-3)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a>0,且对一切x≥0,有eax-ax2≥0,则a的取值范围是[$\frac{4}{{e}^{2}}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知正方体ABCD-A1B1C1D1的棱长为2,E是棱D1C1的中点,点F在正方体内部或正方体的表面上,且EF∥平面A1BC1,则动点F的轨迹所形成的区域面积是(  )
A.$\frac{9}{2}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,直线PA切⊙O于点A,直线PB交⊙O于点B,C,∠APC的角平分线分别与AB,AC相交于点D,E.
(1)证明:AD=AE;
(2)证明:AD2=DB•EC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将1.5${\;}^{\frac{1}{3}}$,1.7${\;}^{\frac{1}{3}}$,1按照由小到大的顺序排列为1<1.5${\;}^{\frac{1}{3}}$<1.7${\;}^{\frac{1}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若不等式|x-1|+|2x+2|≥a2+$\frac{1}{2}$a+2对任意实数x都成立,则实数a的取值范围为$[-\frac{1}{2},0]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.5 个人站成一排,甲乙两人必须站在一起的不同站法有(  )
A.12 种B.24 种C.48 种D.60 种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若$\frac{x+2}{3x-5}$<0,化简$\sqrt{25-30x+9{x^2}}-\sqrt{{{(x+2)}^2}}$-3的结果为-4x.

查看答案和解析>>

同步练习册答案