精英家教网 > 高中数学 > 题目详情
5.将1.5${\;}^{\frac{1}{3}}$,1.7${\;}^{\frac{1}{3}}$,1按照由小到大的顺序排列为1<1.5${\;}^{\frac{1}{3}}$<1.7${\;}^{\frac{1}{3}}$.

分析 利用幂函数的单调性,即可得出结论.

解答 解:由于y=x${\;}^{\frac{1}{3}}$,在R上单调递增,
∵1.5<1.7,∴1.5${\;}^{\frac{1}{3}}$<1.7${\;}^{\frac{1}{3}}$,
又1<1.5${\;}^{\frac{1}{3}}$<1.7${\;}^{\frac{1}{3}}$,
故答案为:1<1.5${\;}^{\frac{1}{3}}$<1.7${\;}^{\frac{1}{3}}$.

点评 本题考查幂函数的单调性,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.曲线y=5x+lnx在点(1,5)处的切线方程为(  )
A.4x-y+1=0B.4x-y-1=0C.6x-y+1=0D.6x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=alnx+(x+1)2,若图象上存在两个不同的点A(x1,y1)、B(x2,y2)(x1>x2),使得f(x1)-f(x2)≤4(x1-x2)成立,则实数a的取值范围为(-∞,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|2x-1|.
(Ⅰ)若不等式f(x+$\frac{1}{2}$)≤2m+1(m>0)的解集为[-2,2],求实数m的值;
(Ⅱ)若不等式f(x)≤2y+$\frac{a}{2^y}$+|2x+3|,对任意的实数x,y∈R恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,两圆相交于A,B两点,P为BA延长线上任意一点,从P引两圆的割线PCD,PFE.
(Ⅰ)求证:C,D,E,F四点共圆;
(Ⅱ)若PF=EF,CD=2PC,求PD与PE的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.周长为20的矩形绕其一边所在直线旋转形成一个封闭几何体,则该几何体的侧面积的最大值是(  )
A.25πB.50πC.100πD.200π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示,OA=1,在以O为圆心,以OA为半径的半圆弧上随机取一点B,则△AOB的面积小于$\frac{1}{4}$的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知各项均不为0的等差数列{an}前n项和为Sn,满足S4=2a5,a1a2=a4,数列{bn}满足bn+1=2bn,b1=2.
(1)求数列{an},{bn}的通项公式;
(2)设cn=$\frac{{{a_n}{b_n}}}{2}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一个顶点为A(2,0),离心率为$\frac{{\sqrt{2}}}{2}$,直线y=k(x-1)与椭圆C交于不同的两点 M,N.
(1)求椭圆C的方程,并求其焦点坐标;
(2)当△AMN的面积为$\frac{{\sqrt{10}}}{3}$时,求k的值.

查看答案和解析>>

同步练习册答案