分析 (1)根据向量$\overrightarrow a$=(m,n),向量$\overrightarrow b$=(1,-1),求出$\overrightarrow a$•$\overrightarrow b$=m-n,$\overrightarrow a$⊥$\overrightarrow b$时m=n,算出事件个数,运用古典概率公式求解.
(2)θ∈(0,$\frac{π}{2}$),$\overrightarrow a$•$\overrightarrow b$>0,判断出m>n,算出事件个数,运用古典概率公式求解.
解答 解:(1)∵连掷两次骰子得到点数分别为m和n,
向量$\overrightarrow a$=(m,n),向量$\overrightarrow b$=(1,-1),$\overrightarrow a$⊥$\overrightarrow b$
∴$\overrightarrow a$•$\overrightarrow b$=m-n=0,
∴总共的事件有36个,符合题意的有6个,
∴P(A)=$\frac{6}{36}$=$\frac{1}{6}$;
(2)∵θ∈(0,$\frac{π}{2}$),
∴$\overrightarrow a$•$\overrightarrow b$>0,即m-n>0,m>n,∵m,n∈[1,6]的整数.
总共的事件有36个,符合题意的有15个,
根据古典概率公式得:$\frac{15}{36}$=$\frac{5}{12}$.
点评 本题考察了向量的数量积的运算,古典概率的求解,难度不大.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1(x>2) | B. | $\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1(x<-2) | ||
| C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x>2) | D. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x<-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com