精英家教网 > 高中数学 > 题目详情
13.△ABC中,A(-4,0),B(4,0),且sinA-sinB=$\frac{1}{2}$sinC,则顶点C的轨迹方程是(  )
A.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1(x>2)B.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1(x<-2)
C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x>2)D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x<-2)

分析 sinA-sinB=$\frac{1}{2}$sinC,由正弦定理得a-b=$\frac{1}{2}$c,即|CB|-|CA|=4<8=|AB|,由双曲线的定义可知点C的轨迹是以A、B为焦点的双曲线的左支,且a=2,c=4,即可得出结论.

解答 解:∵sinA-sinB=$\frac{1}{2}$sinC,
∴由正弦定理得a-b=$\frac{1}{2}$c,即|CB|-|CA|=4<8=|AB|,
由双曲线的定义可知点C的轨迹是以A、B为焦点的双曲线的左支,且a=2,c=4,
∴b2=c2-a2=12.
∴顶点C的轨迹方程为$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x<-2).
故选:D.

点评 本题考查双曲线的定义和标准方程,判断点C的轨迹是以B、A为焦点的双曲线一支,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,已知AB是⊙O的弦,P是AB上一点.
(Ⅰ)若AB=6$\sqrt{2}$,PA=4$\sqrt{2}$,OP=3,求⊙O的半径;
(Ⅱ)若C是圆O上一点,且CA=CB,线段CE交AB于D.求证:△CAD~△CEA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩,列出如下所示2×2列联表:
数学成绩
物理成绩
 优秀不优秀合计
优秀527
不优秀11213
合计61420
(1)根据题中表格的数据计算,你有多少的把握认为学生的数学成绩与物理成绩之间有关系?
(2)若按下面的方法从这20人(序号1,2,3,…,20)中抽取1人来了解有关情况:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号.
试求:①抽到12号的概率;②抽到“无效序号(序号大于20)”的概率.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.连掷两次骰子得到点数分别为m和n,记向量$\overrightarrow a$=(m,n),向量$\overrightarrow b$=(1,-1)
(1)记$\overrightarrow a$⊥$\overrightarrow b$为事件A,求事件A发生的概率;
(2)若$\overrightarrow a$与$\overrightarrow b$的夹角为θ,记θ∈(0,$\frac{π}{2}$)为事件B,求事件B发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图所示,程序框图的输出结果是(  )
A.7B.8C.9D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知正三棱柱ABC-A1B1C1的底面边长为2,高为5,则一质点自A点出发,沿着三棱柱的侧面绕行一周到达点A1的最短路线的长为(  )
A.10B.$\sqrt{41}$C.6D.$\sqrt{61}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.北京某高校在2016年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.
组号分组频数频率
第1组[160,165)50.050
第2组[165,170)n0.350
第3组[170,175)30p
第4组[175,180)200.200
第5组[180,185]100.100
合计1001.000
(1)求频率分布表中n,p的值,并补充完整相应的频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第4、5组中用分层抽样的方法抽取6名学生进入第二轮面试,则第4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定从6名学生中随机抽取2名学生接受甲考官的面试,求第4组至多有1名学生被甲考官面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.2016高考成绩揭晓,漯河高中再创辉煌,考后学校对于单科成绩逐个进行分析:现对甲、乙两个文科班的数学成绩进行分析,规定:大于等于135分为优秀,135分以下为非优秀,成绩统计后,得到如下的2×2列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为$\frac{3}{11}$.
班级优秀非优秀合计
甲班18
乙班43
合计110
(1)请完成上面的列联表
(2)请问:是否有75%的把握认为“数学成绩与所在的班级有关系”?
(3)用分层抽样的方法从甲、乙两个文科班的数学成绩优秀的学生中抽取5名学生进行调研,然后再从这5名学生中随机抽取2名学生进行谈话,求抽到的2名学生中至少有1名乙班学生的概率.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
参考数据:
P(K2≥k00.250.150.100.05
k01.3232.0722.7063.841

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设复数z=1+i(i是虚数单位),则|${\frac{2}{z}$+z|=(  )
A.2B.$\sqrt{5}$C.3D.2$\sqrt{2}$

查看答案和解析>>

同步练习册答案