| A. | $\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1(x>2) | B. | $\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1(x<-2) | ||
| C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x>2) | D. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x<-2) |
分析 sinA-sinB=$\frac{1}{2}$sinC,由正弦定理得a-b=$\frac{1}{2}$c,即|CB|-|CA|=4<8=|AB|,由双曲线的定义可知点C的轨迹是以A、B为焦点的双曲线的左支,且a=2,c=4,即可得出结论.
解答 解:∵sinA-sinB=$\frac{1}{2}$sinC,
∴由正弦定理得a-b=$\frac{1}{2}$c,即|CB|-|CA|=4<8=|AB|,
由双曲线的定义可知点C的轨迹是以A、B为焦点的双曲线的左支,且a=2,c=4,
∴b2=c2-a2=12.
∴顶点C的轨迹方程为$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x<-2).
故选:D.
点评 本题考查双曲线的定义和标准方程,判断点C的轨迹是以B、A为焦点的双曲线一支,是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 数学成绩 物理成绩 | 优秀 | 不优秀 | 合计 |
| 优秀 | 5 | 2 | 7 |
| 不优秀 | 1 | 12 | 13 |
| 合计 | 6 | 14 | 20 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | $\sqrt{41}$ | C. | 6 | D. | $\sqrt{61}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 组号 | 分组 | 频数 | 频率 |
| 第1组 | [160,165) | 5 | 0.050 |
| 第2组 | [165,170) | n | 0.350 |
| 第3组 | [170,175) | 30 | p |
| 第4组 | [175,180) | 20 | 0.200 |
| 第5组 | [180,185] | 10 | 0.100 |
| 合计 | 100 | 1.000 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 班级 | 优秀 | 非优秀 | 合计 |
| 甲班 | 18 | ||
| 乙班 | 43 | ||
| 合计 | 110 |
| P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 |
| k0 | 1.323 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{5}$ | C. | 3 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com