精英家教网 > 高中数学 > 题目详情
2.2016高考成绩揭晓,漯河高中再创辉煌,考后学校对于单科成绩逐个进行分析:现对甲、乙两个文科班的数学成绩进行分析,规定:大于等于135分为优秀,135分以下为非优秀,成绩统计后,得到如下的2×2列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为$\frac{3}{11}$.
班级优秀非优秀合计
甲班18
乙班43
合计110
(1)请完成上面的列联表
(2)请问:是否有75%的把握认为“数学成绩与所在的班级有关系”?
(3)用分层抽样的方法从甲、乙两个文科班的数学成绩优秀的学生中抽取5名学生进行调研,然后再从这5名学生中随机抽取2名学生进行谈话,求抽到的2名学生中至少有1名乙班学生的概率.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
参考数据:
P(K2≥k00.250.150.100.05
k01.3232.0722.7063.841

分析 (1)利用已知条件直接填写联列表即可.
(2)求出k2,即可判断“数学成绩与所在的班级有关系”.
(3)从甲班成绩优秀的学生中抽取3名,分别记为A1,A2,A3,从乙班成绩优秀的学生中抽取2名,分别为B1,B2,列出所有基本事件,设“抽到的2名学生中至少有1名乙班学生”为事件A,求出事件A包含的基本事件个数,然后求解概率.

解答 解:(1)

班级优秀非优秀合计
甲班183755
乙班124355
 合计3080110
…(3分)
(2)由题意得${K^2}=\frac{{110{{(18×43-12×37)}^2}}}{55×55×30×80}=1.65>1.323$
所以有75%的把握认为“数学成绩与所在的班级有关系”…(6分)
(3)因为甲、乙两个班数学成绩优秀的学生人数的比例为18:12=3:2,所以从甲班成绩优秀的学生中抽取3名,分别记为A1,A2,A3,从乙班成绩优秀的学生中抽取2名,分别为B1,B2,则从抽取的5名学生中随机抽取2名学生的所有基本事件有A1A2,A1A3,A1B1,A1B2,A1A3,A2B1,A2B2,A3B1,A3B2,B1B2,共10个
设“抽到的2名学生中至少有1名乙班学生”为事件A,则事件A包含的基本事件有A1B1,A1B2,A2B1,A2B2,A3B1,A3B2,B1B2,共7个,
所以$P(A)=\frac{7}{10}$,即抽到的2名学生中至少有1名乙班学生的概率是$\frac{7}{10}$(12分)

点评 本题考查独立事件与联列表以及古典概型概率的求法,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若不等式|x-1|+|2x+2|≥a2+$\frac{1}{2}$a+2对任意实数x都成立,则实数a的取值范围为$[-\frac{1}{2},0]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.△ABC中,A(-4,0),B(4,0),且sinA-sinB=$\frac{1}{2}$sinC,则顶点C的轨迹方程是(  )
A.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1(x>2)B.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1(x<-2)
C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x>2)D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x<-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若$\frac{x+2}{3x-5}$<0,化简$\sqrt{25-30x+9{x^2}}-\sqrt{{{(x+2)}^2}}$-3的结果为-4x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若sinα=$\frac{12}{13}$,α∈($\frac{π}{2}$,π),则tan2α的值为(  )
A.$\frac{60}{119}$B.$\frac{120}{119}$C.-$\frac{60}{119}$D.-$\frac{120}{119}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知α为第三象限角,且f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α+π)}{sin(π+α)tan(2π-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=(m2-m-1)${x}^{{m}^{2}+m-3}$是幂函数,对任意的x1、x2∈(0,+∞),且x1≠x2,满足$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,若a、b∈R,且a+b>0,ab<0,则f(a)+f(b)的值(  )
A.恒小于0B.恒大于0C.等于0D.无法判断

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,AB是圆O的直径,延长BA至C,使AC=$\frac{1}{3}$BC,过C作圆O的切割线交圆O于M、N两点,且AM=MN.
(1)证明:∠AOM=∠ABN;
(2)若MN=2,求AN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.三角形的三个顶点是A(4,0),B(6,7),C(0,3).
(1)求AB边上的中线所在直线的方程;
(2)求BC边的垂直平分线的方程.

查看答案和解析>>

同步练习册答案