精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的焦距为,点关于直线的对称点在椭圆上.

1)求椭圆的方程;

2)如图,过点的直线与椭圆交于两个不同的点(点在点的上方),试求面积的最大值;

3)若直线经过点,且与椭圆交于两个不同的点,是否存在直线(其中),使得到直线的距离满足恒成立?若存在,求出的值;若不存在,请说明理由.

【答案】1;(21;(3)存在,4.

【解析】

1)根据椭圆的焦距求出c,由P02)关于直线y=﹣x的对称点在椭圆Γ上可得a2,即可求出b2,可得椭圆方程;

2)设过点P02)的直线方程为ymx+2,代入椭圆方程,运用韦达定理,弦长公式和点到直线的距离,表示出三角形的面积,再根据函数的性质即可求出最值;

3)设直线l的方程为ykx1),代入椭圆方程,运用韦达定理,假设存在这样的直线l0,运用点到直线的距离公式和两点的距离公式,可得,化简整理代入,即可判断.

1)点关于直线的对称点为

因为在椭圆上,所以,又,故

.所以,椭圆的方程为

2)由题意,直线的斜率存在,设的方程为

由△,得

,则,且

所以,

,则,所以,

因为(当且仅当时等号成立),此时

所以,当且仅当,即时,△的面积取最大值

3)当直线的斜率不存在时,的方程为,此时

等式成立;

当直线的斜率存在时,设直线的方程为

span>设,则

由题意,一个小于,另一个大于,不妨设

所以,

,解得

综上,存在满足条件的直线,使得恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列叙述正确的是(

A.命题pq为真,则恰有一个为真命题

B.命题已知,则的充分不必要条件

C.命题都有,则,使得

D.如果函数在区间上是连续不断的一条曲线,并且有,那么函数在区间内有零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用一个半径为12厘米圆心角为的扇形纸片PAD卷成一个侧面积最大的无底圆锥(接口不用考虑损失),放于水平面上.

1)无底圆锥被一阵风吹倒后(如图1),求它的最高点到水平面的距离;

2)扇形纸片PAD上(如图2),C是弧AD的中点,B是弧AC的中点,卷成无底圆锥后,求异面直线PABC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)当时,解不等式

2)若关于的方程的解集中恰好有一个元素,求实数的值;

3)设,若对任意,函数在区间上的最大值与最小值的差不超过,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)设函数,若对任意的,都有,求实数的取值范围;

2)设,方程在区间上有实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新能源汽车是我国汽车工业由大变强的一条必经之路!国家对其给予政策上的扶持,己成为我国的战略方针.近年来,我国新能源汽车制造蓬勃发展,某著名车企自主创新,研发了一款新能源汽车,经过大数据分析获得:在某种路面上,该品牌汽车的刹车距离(米)与其车速(千米/小时)满足下列关系:是常数).(行驶中的新能源汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离).如图是根据多次对该新能源汽车的实验数据绘制的刹车距离(米)与该车的车速(千米/小时)的关系图.该新能源汽车销售公司为满足市场需求,国庆期间在甲、乙两地同时展销该品牌的新能源汽车,在甲地的销售利润(单位:万元)为,在乙地的销售利润(单位:万元)为,其中为销售量(单位:辆).

(1)若该公司在两地共销售20辆该品牌的新能源汽车,则能获得的最大利润是多少?

(2)如果要求刹车距离不超过25.2米,求该品牌新能源汽车行驶的最大速度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中,是自然对数的底数) .

(1)若对任意,都有,的取值范围;

(2)()的最小值为,,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).

(Ⅰ)求的解析式及单调递减区间;

(Ⅱ)若函数无零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的方程为为椭圆C的左右焦点,离心率为,短轴长为2。

(1)求椭圆C的方程;

(2)如图,椭圆C的内接平行四边形ABCD的一组对边分别过椭圆的焦点,求该平行四边形ABCD面积的最大值.

查看答案和解析>>

同步练习册答案