精英家教网 > 高中数学 > 题目详情
18.已知二次函数f(x)=ax2+bx+c的图象与y=-2x2+3x的图象有相同的开口大小及方向,与二次函数y=x2-$\frac{1}{2}$x+1的图象有相同的对称轴,与二次函数y=4x2-x-1的图象在y轴上有相同的交点.
(1)求函数f(x)的解析式;
(2)由函数y=x2的图象怎样得到函数f(x)的图象?

分析 (1)根据已知中二次函数f(x)=ax2+bx+c的图象与y=-2x2+3x的图象有相同的开口大小及方向,与二次函数y=x2-$\frac{1}{2}$x+1的图象有相同的对称轴,与二次函数y=4x2-x-1的图象在y轴上有相同的交点,分别求出a,b,c值,可得函数f(x)的解析式;
(2)结合函数图象的平移变换法则,伸缩变换法则,和对称变换法则,可得到变换方法.

解答 解:(1)∵二次函数f(x)=ax2+bx+c的图象与y=-2x2+3x的图象有相同的开口大小及方向,
∴a=-2,
又∵二次函数f(x)与二次函数y=x2-$\frac{1}{2}$x+1的图象有相同的对称轴,
∴$-\frac{b}{4}$=$\frac{1}{4}$,
∴b=-1,
又∵二次函数f(x)与二次函数y=4x2-x-1的图象在y轴上有相同的交点,
∴c=-1,
∴函数f(x)=-2x2-x-1;
(2)由f(x)=-2(x-$\frac{1}{4}$)2-$\frac{7}{8}$,
故由函数y=x2的图象保持横坐标不变,再纵坐标拉长到原来的2倍,
再关于x轴对称变换,
再向右平移$\frac{1}{4}$个单位,再向下平移$\frac{7}{8}$个单位,得到函数f(x)的图象.

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.(2+x+x2)(1-$\frac{1}{x}$)3的展开式中常数项为(  )
A.-2B.5C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足A=60°,sinB+sinC=2sinA,bc=5,则a的值为(  )
A.2B.$\sqrt{5}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设等差数列{an}的公差为整数,且a4=a32-28,a5=10,
(1)求数列{an}的通项公式;
(2)设bn=a3n+1,若数列{bn}的前n项和Sn=350,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)是定义在(-1,1)上的增函数,且f(a-2)-f(3-a)<0,那么a的取值范围是(2,$\frac{5}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=1,若|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,试求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给定下列四组函数:
①f(x)=|x|,g(t)=$\sqrt{{t}^{2}}$;
②f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2
③f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1;
④f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$,g(x)=$\sqrt{{x}^{2}-1}$
其中表示同一函数的是①(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.证明三个向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$共面的充分必要条件是
$|\begin{array}{l}{\overrightarrow{a}\overrightarrow{a}}&{\overrightarrow{a}\overrightarrow{b}}&{\overrightarrow{a}\overrightarrow{c}}\\{\overrightarrow{b}\overrightarrow{a}}&{\overrightarrow{b}\overrightarrow{b}}&{\overrightarrow{b}\overrightarrow{c}}\\{\overrightarrow{c}\overrightarrow{a}}&{\overrightarrow{c}\overrightarrow{b}}&{\overrightarrow{c}\overrightarrow{c}}\end{array}|$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解不等式log0.3(3x-4)<log0.3(2x+4)

查看答案和解析>>

同步练习册答案