【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2017年1月至2019年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论正确的是( )
![]()
A.年接待游客量逐年增加
B.各年的月接待游客量高峰期大致在8月
C.2017年1月至12月月接待游客量的中位数为30
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
科目:高中数学 来源: 题型:
【题目】数列
是公差为d(
)的等差数列,它的前n项和记为
,数列
是公比为q(
)的等比数列,它的前n项和记为
.若
,且存在不小于3的正整数
,使
.
(1)若
,求
.
(2)若
试比较
与
的大小,并说明理由;
(3)若
,是否存在整数m,k,使
若存在,求出m,k的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为大力提倡“厉行节约,反对浪费”,衡阳市通过随机询问100名性别不同的居民是否做到“光盘”行动,得到如右列联表及附表:经计算:
参照附表,得到的正确结论是( )
做不到“光盘”行动 | 做到“光盘”行动 | |
男 | 45 | 10 |
女 | 30 | 15 |
|
|
|
|
k |
|
|
|
A.在犯错误的概率不超过1%的前提下,认为“该市民能否做到‘光盘’行动与性别有关”
B.在犯错误的概率不超过1%的前提下,认为“该市民能否做到‘光盘’行动与性别无关”
C.有90%以上的把握认为“该市民能否做到‘光盘’行动与性别有关”
D.有90%以上的把握认为“该市民能否做到‘光盘’行动与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
的底面为直角梯形,
,
,
,
,平面
平面
,二面角
的大小为
,
,
为线段
的中点,
为线段
上的动点.
![]()
(1)求证:平面
平面
;
(2)是否存在点
,使二面角
的大小为
,若存在,求
的值,不存在说出理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com