精英家教网 > 高中数学 > 题目详情
16.若a>0,且a≠1,设函数f(x)=$\left\{\begin{array}{l}{{a}^{|x|},x<1}\\{|{x}^{2}-2x|,x≥1}\end{array}\right.$,若不等式f(x)≤3的解集是(-∞,3],则a的取值范围是(  )
A.(1,+∞)B.(1,3)C.(0,1)D.[3,+∞)

分析 利用分段函数,结合指数函数的单调性,推出不等式,求解即可.

解答 解:a>0,且a≠1,设函数f(x)=$\left\{\begin{array}{l}{{a}^{|x|},x<1}\\{|{x}^{2}-2x|,x≥1}\end{array}\right.$,若不等式f(x)≤3的解集是(-∞,3],
当x≥1时,|x2-2x|≤3,可得1≤x≤3;
当x<1,即x∈(-∞,1)时,a|x|≤3,不等式恒成立可得0<a<1.
综上可得0<a<1.
故选:C.

点评 本题考查分段函数的应用,函数的单调性的应用,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知A={y|y=x2-2x-1,x∈R},B={x|-2≤x<8},则集合A与B的关系是B⊆A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=x•(x2-kx+x)是奇函数,则k的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列四个结论;
①函数可以看成是其定义域到值域的映射;
②函数f(x)=|x-1|-2的最小值是-2;
③函数f(x)=$\frac{1}{x}$+1的值域是(-∞,1)∪(1,+∞);
④函数f(x)=$\frac{\sqrt{2{x}^{2}-x-1}}{x-1}$的定义域是(-∞,-$\frac{1}{2}$]∪(1,+∞)
其中,正确的个数是(  )
A.2B.4C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合A={a|a=3k,k∈Z},B={b|b=6k+1,k∈Z},C={c|c=9k+1,k∈Z},若x∈A,y∈B,z=x+y,则(  )
A.z∈AB.z∈BC.z∈CD.以上答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列函数的值域:
(1)-x2-4x+3;
(2)y=$\frac{1}{2+x+{x}^{2}}$;
(3)y=x-$\sqrt{x+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x(x≥0)}\\{4x-{x}^{2}(x<0)}{\;}\end{array}\right.$,若f(2-a)>f(a),则实数a的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设点P(x,y)在椭圆4x2+y2=4上,则x+y的最大值为$\sqrt{5}$,最小值为$-\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知抛物线y=x2+(m-3)x+m与x轴的正半轴交于两点,则实数m的取值范围是0<m<1.

查看答案和解析>>

同步练习册答案