精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=x•(x2-kx+x)是奇函数,则k的值是1.

分析 由奇函数定义,代入计算即可得出结论.

解答 解:由奇函数定义有f(-x)=-f(x),
则(-x)•(x2+kx-x)=-x•(x2-kx+x),
解得k=1.
故答案为:1.

点评 本题考查奇函数定义,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知偶函数f(x),当x∈[0,2)时,f(x)=2sinx,当x∈[2,+∞)时,f(x)=log2x,则f(-$\frac{π}{3}$)+f(4)=$\sqrt{3}$+2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在等差数列{an}中,a1=-2016,其前n项和为Sn,若$\frac{{S}_{2017}}{2017}$-$\frac{{S}_{2015}}{2015}$=2,则S2016=-2016.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知平面上一定点C(2,O)和直线l:x=8,P为该平面上一动点,作PQ⊥l,垂足为Q,且($\overrightarrow{PC}$+$\frac{1}{2}$$\overrightarrow{PQ}$)•($\overrightarrow{PC}$-$\frac{1}{2}$$\overrightarrow{PQ}$)=0.
(1)求动点P的轨迹方程;
(2)若EF为圆N:x2+(y-1)2=1的任一条直径,求$\overrightarrow{PE}$•$\overrightarrow{PF}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数的定义域是x≠0的一切实数,对定义域内的任意实数x,y都有f(xy)=f(x)+f(y),且当x>1时,f(x)>0,f(2)=1.
(1)求f(1)、f(8)的值;
(2)求证:f(x)是偶函数;
(3)证明:f(x)在(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在数列{bn}中,b1=0,bn+1=-$\frac{1}{3}$bn+$\frac{1}{3}$,n∈R.
(1)求数列{bn}的通项公式;
(2)令an=3nbn,求$\frac{{a}_{n}}{{a}_{n+1}}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.有四个数,前三个数成等比数列,后三个数成等差数列,第一个数与第四个数的和为21,中间两个数的和为18,求这四个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若a>0,且a≠1,设函数f(x)=$\left\{\begin{array}{l}{{a}^{|x|},x<1}\\{|{x}^{2}-2x|,x≥1}\end{array}\right.$,若不等式f(x)≤3的解集是(-∞,3],则a的取值范围是(  )
A.(1,+∞)B.(1,3)C.(0,1)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知关于x的不等式组$\left\{\begin{array}{l}{(2x-3)(3x+2)≤0}\\{x-a>0}\end{array}\right.$无实数解,求实数a的取值范围.

查看答案和解析>>

同步练习册答案