分析 (1)利用递增等差数列通项公式和等比数列性质,列出方程组,求出首项和公差,由此能求出数列{an}的通项公式.
(2)求出bn=${a}_{{2}^{n-1}}$=$\frac{{2}^{n-1}}{2}$=2n-2=$\frac{{2}^{n}}{4}$,从而cn=n•bn=$\frac{n}{4}•{2}^{n}$,由此利用错位相减法能求出数列{cn}的前n项和Tn.
解答 解:(1)∵在递增等差数列{an}中,a4=2,且a2,a4,a8成等比数列,
∴$\left\{\begin{array}{l}{{a}_{1}+3d=2}\\{{2}^{2}=({a}_{1}+d)({a}_{1}+7d)}\\{d>0}\end{array}\right.$,
解得${a}_{1}=\frac{1}{2},d=\frac{1}{2}$,
∴an=$\frac{1}{2}+(n-1)×\frac{1}{2}$=$\frac{n}{2}$.
(2)∵从数列{an}中依次取出${a_1},{a_2},{a_4},{a_8},…,{a_{{2^{n-1}}}},…$,构成一个新的数列{bn},
∴bn=${a}_{{2}^{n-1}}$=$\frac{{2}^{n-1}}{2}$=2n-2=$\frac{{2}^{n}}{4}$,
∴cn=n•bn=$\frac{n}{4}•{2}^{n}$,
∴数列{cn}的前n项和:
Tn=$\frac{1}{4}×2+\frac{2}{4}×{2}^{2}+\frac{3}{4}×{2}^{3}+…+\frac{n}{4}×{2}^{n}$,①
2Tn=$\frac{1}{4}×{2}^{2}+\frac{2}{4}×{2}^{3}+\frac{3}{4}×{2}^{4}+…+\frac{n}{4}×{2}^{n+1}$,②
①-②,得:-Tn=$\frac{1}{4}$(2+22+23+24+…+2n)-$\frac{n}{4}×{2}^{n+1}$
=$\frac{1}{4}×\frac{2(1-{2}^{n})}{1-2}-\frac{n}{4}×{2}^{n+1}$
=$\frac{{2}^{n}-n×{2}^{n}}{2}$-$\frac{1}{2}$,
∴Tn=$\frac{n-1}{2}×{2}^{n}$+$\frac{1}{2}$.
点评 本题考查了等差数列和等比数列的求和的运用,属于中档题,解题时要认真审题,注意错位相减法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com