4£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²W£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£®OÎª×ø±êÔ­µã£¬ÍÖÔ²¹ýµãM£¨0£¬1£©£¬ÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬Ö±Ïßy=kx+m£¨m¡Ù0£©ÓëÍÖÔ²½»ÓÚA£¬CÁ½µã£¬BΪÍÖÔ²ÉÏÒ»µã£®
£¨1£©ÇóÍÖÔ²±ê×¼·½³Ì£®
£¨2£©Ó÷´Ö¤·¨Ö¤Ã÷£ºµ±µãB²»ÊÇWµÄ¶¥µãʱ£¬ËıßÐÎOABCÊDz»¿ÉÄÜΪÁâÐΣ®

·ÖÎö £¨1£©¸ù¾ÝÒÑÖª£¬¹¹Ôì¹ØÓÚa£¬b£¬cµÄ·½³Ì×飬½âµÃÍÖÔ²±ê×¼·½³Ì£®
£¨2£©¼ÙÉèËıßÐÎOABCΪÁâÐΣ®¸ù¾ÝÒÑÖªµÃµ½Ã¬¶Ü£¬¿ÉµÃËıßÐÎOABCÊDz»¿ÉÄÜΪÁâÐΣ®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²¹ýµãM£¨0£¬1£©£¬ÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬
¡à$\left\{\begin{array}{l}\frac{c}{a}=\frac{\sqrt{3}}{2}\\{a}^{2}={b}^{2}+{c}^{2}\\{b}^{2}=1\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{a}^{2}=4\\{b}^{2}=1\\{c}^{2}=3\end{array}\right.$
¡àÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1                                    £¨4·Ö£©
Ö¤Ã÷£º£¨2£©¼ÙÉèËıßÐÎOABCΪÁâÐΣ®
ÒòΪµãB²»ÊÇWµÄ¶¥µã£¬ËıßÐÎOABCΪÁâÐÎËùÒÔAC¡ÍOB£¬m¡Ù0
ÓÉ$\left\{\begin{array}{l}\frac{{x}^{2}}{4}+{y}^{2}=1\\ y=kx+m\end{array}\right.$Ïûy²¢ÕûÀíµÃ
£¨1+4k2£©x2+8kmx+4m2-4=0£®£¨6·Ö£©
ÉèA£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬Ôò
$\frac{x1+x2}{2}$=-$\frac{4km}{1+4k2}$£¬
$\frac{y1+y2}{2}$=k•$\frac{x1+x2}{2}$+m=$\frac{m}{1+4k2}$£®
ËùÒÔACµÄÖеãΪM£¨-$\frac{4km}{1+4k2}$£¬$\frac{m}{1+4k2}$£©£®£¨8·Ö£©
ÒòΪMΪACºÍOBµÄ½»µã£¬ÇÒm¡Ù0£¬k¡Ù0£¬
ËùÒÔÖ±ÏßOBµÄбÂÊΪ-$\frac{1}{4k}$£®£¨11·Ö£©
ÒòΪk•£¨-$\frac{1}{4k}$£©¡Ù-1£¬ËùÒÔACÓëOB²»´¹Ö±£®
ËùÒÔËıßÐÎOABC²»ÊÇÁâÐΣ¬Óë¼ÙÉèì¶Ü£®              £¨11·Ö£©
ËùÒÔµ±µãB²»ÊÇWµÄ¶¥µãʱ£¬ËıßÐÎOABC²»¿ÉÄÜΪÁâÐΣ®£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊÇÍÖÔ²µÄ±ê×¼·½³ÌºÍÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬ÄѶÈÖеµ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÔÚµÝÔöµÈ²îÊýÁÐ{an}ÖУ¬a4=2£¬ÇÒa2£¬a4£¬a8³ÉµÈ±ÈÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©´ÓÊýÁÐ{an}ÖÐÒÀ´ÎÈ¡³ö${a_1}£¬{a_2}£¬{a_4}£¬{a_8}£¬¡­£¬{a_{{2^{n-1}}}}£¬¡­$£¬¹¹³ÉÒ»¸öеÄÊýÁÐ{bn}£¬Áîcn=n•bn£¬ÇóÊýÁÐ{cn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªµÈ²îÊýÁÐ{an}ǰnÏîºÍΪSn£¬Èôa1+a3=7£¬a2+a4=11£¬ÔòS12Ϊ£¨¡¡¡¡£©
A£®150B£®155C£®160D£®165

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÇÒA=$\frac{¦Ð}{6}$£¬B=$\frac{¦Ð}{12}$£¬a=3£¬ÔòcµÄÖµ3$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÖ±Ïßl1£º2x+y+2=0ºÍl2£º3x+y+1=0£¬ÉèÖ±Ïßl1ºÍl2µÄ½»µãΪP
£¨1£©Çó¹ýµãPÇÒÓëÖ±Ïßl3£º2x+3y+5=0´¹Ö±µÄÖ±Ïß·½³Ì£»
£¨2£©Ö±Ïßl¹ýµãPÇÒÔÚÁ½×ø±êÖáÉϵĽؾàÖ®ºÍΪ-6£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªP£º?x¡Ê£¨0£¬+¡Þ£©£¬$x+\frac{1}{x}£¾a$£¬$q£ºa£¼\sqrt{3}$£¬ÔòPÊÇqµÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=lnx+$\frac{1}{4}$x2-$\frac{1}{2}$x
£¨1£©ÅжÏf£¨x£©ÊÇ·ñΪ¶¨ÒåÓòÉϵĵ¥µ÷º¯Êý£¬²¢ËµÃ÷ÀíÓÉ
£¨2£©Éèx¡Ê£¨0£¬e]£¬f£¨x£©-mx¡Ü0ºã³ÉÁ¢£¬ÇómµÄ×îСÕûÊýÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªaÊǺ¯Êý$f£¨x£©={£¨{\frac{1}{3}}£©^x}+{log_{\frac{1}{3}}}x$µÄÁãµã£¬Èô0£¼x0£¼a£¬Ôòf£¨x0£©µÄÖµÂú×㣨¡¡¡¡£©
A£®f£¨x0£©=0B£®f£¨x0£©£¼0C£®f£¨x0£©£¾0D£®f£¨x0£©µÄ·ûºÅ²»È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®½â¹ØÓÚx·½³Ìsin£¨4x+$\frac{¦Ð}{3}$£©-4sin£¨2x-$\frac{5¦Ð}{6}$£©+cos£¨2x+$\frac{¦Ð}{6}$£©+2=0£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸