分析 (1)由椭圆两个焦点为F1(-2,0),F2(2,0),P是椭圆上的动点,且向量$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值为2,列出方程组求出a,b,由此能求出椭圆C的方程.
(2)当直线l的斜率存在时,设直线l1的方程为y=k(x+2),代入椭圆C的方程$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}$=1,得(3k2+1)x2+12k2x+12k2-6=0,由此利用韦达定理、弦长公式、点到直线距离公式、正弦定理能求出直线l;直线l的斜率不存在时,直线l的方程为x=-2.由此能求出结果.
解答 解:(1)∵椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,两个焦点为F1(-2,0),F2(2,0),P是椭圆上的动点,且向量$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值为2
∴$\left\{\begin{array}{l}{c=2}\\{{a}^{2}={b}^{2}+{c}^{2}}\\{(a+c)(a-c)=2}\end{array}\right.$,
解得c=2,a2=6,b2=2,
故椭圆C的方程为$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}$=1.
(2)当直线l的斜率存在时,
设直线l1的方程为y=k(x+2),代入椭圆C的方程$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}$=1,并整理得:
(3k2+1)x2+12k2x+12k2-6=0,
设M(x1,y1),N(x2,y2)
则x1+x2=-$\frac{12{k}^{2}}{3{k}^{2}+1}$,x1x2=$\frac{12{k}^{2}-6}{3{k}^{2}+1}$,
∴|MN|=$\sqrt{1+{k}^{2}}$•|x1-x2|=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{2\sqrt{6}(1+{k}^{2})}{3{k}^{2}+1}$,
坐标原点O到直线l的距离d=$\frac{|2k|}{\sqrt{1+{k}^{2}}}$.
∵$\overrightarrow{OM}•\overrightarrow{ON}sinθ=\frac{{4\sqrt{6}}}{3}cosθ$$(θ≠\frac{π}{2})$,
∴S△MON=$\frac{2\sqrt{6}}{3}$,
∴S△MON=$\frac{1}{2}$|MN|d=$\frac{1}{2}×\frac{2\sqrt{6}(1+{k}^{2})}{3{k}^{2}+1}×\frac{|2k|}{\sqrt{1+{k}^{2}}}$=$\frac{2\sqrt{6}}{3}$,
解得k=±$\frac{\sqrt{3}}{3}$此时直线l的方程为y=±$\frac{\sqrt{3}}{3}$(x+2)
当直线l的斜率不存在时,直线l的方程为x=-2
此时点M(-2,$\frac{\sqrt{6}}{3}$),N(-2,-$\frac{\sqrt{6}}{3}$),满足S△MON=$\frac{2\sqrt{6}}{3}$,
综上得,直线l的方程为x=-2或y=±$\frac{\sqrt{3}}{3}$(x+2).
点评 本题考查椭圆方程、直线方程的求法,是中档题,解题时要认真审题,注意韦达定理、弦长公式、点到直线距离公式、正弦定理、椭圆性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | -$\frac{8}{3}$ | C. | -$\frac{8}{3}$ 或8 | D. | 8或-$\frac{3}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ±$\frac{\sqrt{3}}{6}$ | B. | $\frac{\sqrt{3}}{6}$ | C. | $\frac{2}{\sqrt{3}}$ | D. | ±$\frac{2}{\sqrt{3}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com