精英家教网 > 高中数学 > 题目详情
10.在10与100之间插入n个数,使着n+2个数构成一个递增的等比数列,设n+2个数之积Tn,an=lgTn,则{an}前n项之和为$\frac{3{n}^{2}+15n}{4}$.

分析 设t1,t2,…,tn+2构成等比数列,其中t1=10,tn+2=100,由ti×tn+3-i=${t}_{1}×{t}_{n+2}=10×100=1000=1{0}^{3}$(1≤i≤n+2),得到${T}_{n}=1{0}^{\frac{3(n+2)}{2}}$,从而an=lgTn=$\frac{3}{2}(n+2)$=$\frac{3}{2}n+3$,由此能求出{an}前n项之和.

解答 解:设t1,t2,…,tn+2构成等比数列,其中t1=10,tn+2=100,
∴ti×tn+3-i=${t}_{1}×{t}_{n+2}=10×100=1000=1{0}^{3}$(1≤i≤n+2),
∵Tn=t1×t2×…×tn+1×tn+2,①
Tn=tn+2×tn+1×…×t2×t1,②
∴①×②得:${{T}_{n}}^{2}$=(t1tn+2)×(t2tn+1)×…×(tn+1t2)×(tn+2t1)=103(n+2)
∴${T}_{n}=1{0}^{\frac{3(n+2)}{2}}$,
∴an=lgTn=$\frac{3}{2}(n+2)$=$\frac{3}{2}n+3$,
∴{an}前n项之和为:
Sn=$\frac{3}{2}(1+2+3+…+n)+3n$
=$\frac{3}{2}×\frac{n(n+1)}{2}+3n$
=$\frac{3{n}^{2}+15n}{4}$.
故答案为:$\frac{3{n}^{2}+15n}{4}$.

点评 本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意等比数列和等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知2a=m,3a=n,则72a等于(  )
A.m3n2B.mn2C.m4nD.m2n3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知全集U=R,非空集合A={x|-l≤x≤a},B={x|x≥1),且A⊆CUB,则实数a的取值范围为(  )
A.(-1,1)B.(-∞,1)C.[-1,1]D.[-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.关于直线l,m及平面α,β,下列说法中正确的是(  )
A.若l∥α,α∩β=m,则l∥mB.若l∥α,m∥α,则l∥m
C.若l∥β,l⊥α,则α⊥βD.若l∥α,l∥m,则m∥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow a=(λ,{λ^2}-{sin^2}α)$,$\overrightarrow b=(μ-1,μ+cosα)$,其中λ,μ,α为实数,且$\overrightarrow a=-2\overrightarrow b$,
(1)求μ的取值范围;
(2)求$\frac{λ^2}{μ}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数$y=\frac{1}{2x-1}+\sqrt{x+1}+\root{3}{3x-1}$的定义域为$\left\{{x|x≥-1且x≠\frac{1}{2}}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,两个焦点为F1(-2,0),F2(2,0),P是椭圆上的动点,且向量$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值为2.
(1)求椭圆方程;
(2)过左焦点的直线l交椭圆C与M、N两点,且满足$\overrightarrow{OM}•\overrightarrow{ON}sinθ=\frac{{4\sqrt{6}}}{3}cosθ$$(θ≠\frac{π}{2})$,求直线l的方程(其中∠MON=θ,O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\vec a$=(sinx,cosx),$\overrightarrow{b}$=(cosx,-cosx).
(1)若$\vec b⊥(\vec a-\vec b)$,且cosx≠0,求$sin2x+sin(\frac{5}{2}π+2x)$的值;
(2)若$f(x)=\vec a•\vec b$,求f(x)在[-$\frac{π}{4}$,0]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若数列{an}满足${a_1}•{a_2}•{a_3}…{a_n}={n^2}+3n+2$,则a4=$\frac{3}{2}$,an=$\left\{\begin{array}{l}{6,n=1}\\{\frac{n+2}{n},n>1}\end{array}\right.$.

查看答案和解析>>

同步练习册答案