精英家教网 > 高中数学 > 题目详情
4.在平面直角坐标系中,已知点A(-1,0),B(1,2),C(3,-1),点P(x,y)为△ABC边界及内部的任意一点,则x+y的最大值为3.

分析 由三角形三个顶点的坐标作出平面区域,令z=x+y,化为y=-x+z,数形结合顶点最优解,把最优解的坐标代入得答案.

解答 解:△ABC三个顶点坐标分别为A(-1,0),B(1,2),C(3,-1),
如图,

令z=x+y,化为y=-x+z,
可知当直线y=-x+z过B时,直线在y轴上的截距最大,z有最大值为3.
故答案为:3.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE(A1∉平面ABCD),若M、O分别为线段A1C、DE的中点,则在△ADE翻转过程中,下列说法错误的是(  )
A.与平面A1DE垂直的直线必与直线BM垂直
B.异面直线BM与A1E所成角是定值
C.一定存在某个位置,使DE⊥MO
D.三棱锥A1-ADE外接球半径与棱AD的长之比为定值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2|x-2|+3|x+3|.
(1)解不等式:f(x)>15;
(2)若函数f(x)的最小值为m,正实数a,b满足4a+25b=m,证明:$\frac{1}{a}$+$\frac{1}{b}$≥$\frac{49}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知λ∈R,函数f(x)=ex-ex-λ(xlnx-x+1)的导数为g(x).
(1)求曲线y=f(x)在x=1处的切线方程;
(2)若函数g(x)存在极值,求λ的取值范围;
(3)若x≥1时,f(x)≥0恒成立,求λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图.
(Ⅰ)求a的值;
(Ⅱ)假设同组中的每个数据用该组区间的中点值代替,估计该市中学生中的全体男生的平均身高;
(Ⅲ)从该市的中学生中随机抽取一名男生,根据直方图中的信息,估计其身高在180cm 以上的概率.若从全市中学的男生(人数众多)中随机抽取3人,用X表示身高在180cm以上的男生人数,求随机变量X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∠ACB=90°,AC=BC=1,AA1=2,D是棱AA1的中点.   
(Ⅰ)求证:B1C1∥平面BCD;
(Ⅱ)求三棱锥B-C1CD的体积;
(Ⅲ)在线段BD上是否存在点Q,使得CQ⊥BC1?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,点M在曲线y=$\sqrt{x}$,若由曲线y=$\sqrt{x}$与直线OM所围成的阴影部分的面积为$\frac{1}{6}$,则实数a等于(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某品牌洗衣机专柜在国庆期间举行促销活动,茎叶图1中记录了每天的销售量(单位:台),把这些数据经过如图2所示的程序框图处理后,输出的S=(  )
A.196B.203C.28D.29

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.平面内三点A,B,C满足|$\overrightarrow{BA}$|=3,|$\overrightarrow{BC}$|=4,$\overrightarrow{BA}$$•\overrightarrow{BC}$=0,M,N为平面内的动点,且$\overrightarrow{AM}$为单位向量,若$\overrightarrow{MC}$=2$\overrightarrow{MN}$,则|$\overrightarrow{BN}$|的最大值与最小值的和为(  )
A.10B.8C.7D.5

查看答案和解析>>

同步练习册答案