精英家教网 > 高中数学 > 题目详情
16.如图,点M在曲线y=$\sqrt{x}$,若由曲线y=$\sqrt{x}$与直线OM所围成的阴影部分的面积为$\frac{1}{6}$,则实数a等于(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.1D.2

分析 利用定积分的几何意义表示曲边梯形的面积,然后计算.

解答 解:由题意,M(a,$\sqrt{a}$),直线OM的方程为y=$\frac{x}{\sqrt{a}}$
故所求图形的面积为S=∫0a($\sqrt{x}$-$\frac{x}{\sqrt{a}}$)dx
=($\frac{2}{3}{x}^{\frac{3}{2}}$-$\frac{{x}^{2}}{2\sqrt{a}}$)|0a=$\frac{1}{6}{a}^{\frac{3}{2}}$=$\frac{1}{6}$,
∴a=1,
故选:C.

点评 本题考查了利用定积分求封闭图形的面积;关键是正确利用定积分表示面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设集合A={x|x(5-x)>4},B={x|x≤a},若A∪B=B,则a的值可以是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|x2-9≤0},B={x|y=ln(-x2+x+12)},则A∩B=(  )
A.{x|-3≤x<3}B.{x|-2<x≤0}C.{x|-2<x<0}D.{x|x<0或x>2且x≠3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系中,已知点A(-1,0),B(1,2),C(3,-1),点P(x,y)为△ABC边界及内部的任意一点,则x+y的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在直角坐标系xOy中,直线l过抛物线y2=4x的焦点F,且与该抛物线相交于A,B两点,其中点A在x轴上方.若直线l的倾斜角为60°,则|OA|=$\sqrt{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设数列{an}的通项公式an=2n-1,数列{bn}满足a1b1+a2b2+a3b3+…+anbn=$\frac{20}{9}$+($\frac{2n}{3}$-$\frac{5}{9}$)×2${\;}^{2n+{2}^{\;}}$,则数列{bn}的通项公式bn=4n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.f(x)=$\sqrt{x}$lnx在点(4,f(4))处的切线方程为(  )
A.(ln2+1)x-2y+4ln2-4=0B.(ln4+1)x-2y+7ln4-1=0
C.(ln4+1)x-2y+8ln2-4=0D.(ln2+1)x+2y+7ln2-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,D为BC的中点,∠BAD+∠C≥90°.
(Ⅰ)求证:sin2C≤sin2B;
(Ⅱ)若cos∠BAD=-$\frac{1}{4}$,AB=2,AD=3,求AC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知F1、F2是椭圆C1与双曲线C2的公共焦点,点P是C1与C2的公共点,若椭圆C1的离心率e1∈($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$],∠F1PF2=$\frac{π}{2}$,则双曲线C2的离心率e2的最小值为(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案