分析 由a1b1+a2b2+a3b3+…+anbn=$\frac{20}{9}$+($\frac{2n}{3}$-$\frac{5}{9}$)×2${\;}^{2n+{2}^{\;}}$,n≥2时,a1b1+a2b2+a3b3+…+an-1bn-1=$\frac{20}{9}$+($\frac{2(n-1)}{3}$-$\frac{5}{9}$)×22n,相减可得anbn=4n(2n-1),解得bn.n=1时,a1b1=4,解得b1.
解答 解:由数列{an}的通项公式an=2n-1,
数列{bn}满足a1b1+a2b2+a3b3+…+anbn=$\frac{20}{9}$+($\frac{2n}{3}$-$\frac{5}{9}$)×2${\;}^{2n+{2}^{\;}}$,
∴n≥2时,a1b1+a2b2+a3b3+…+an-1bn-1=$\frac{20}{9}$+($\frac{2(n-1)}{3}$-$\frac{5}{9}$)×22n,
∴anbn=4n(2n-1),∴bn=4n.
n=1时,a1b1=$\frac{20}{9}+\frac{1}{9}×{2}^{4}$=4,解得b1=4,上式对于n=1时也成立.
∴bn=4n.
故答案为:4n.
点评 本题考查了数列递推关系、方程思想方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overline{{x}_{1}}$>$\overline{{x}_{2}}$,y1>y2 | B. | $\overline{{x}_{1}}$>$\overline{{x}_{2}}$,y1=y2 | C. | $\overline{{x}_{1}}$<$\overline{{x}_{2}}$,y1=y2 | D. | $\overline{{x}_{1}}$<$\overline{{x}_{2}}$,y1<y2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 196 | B. | 203 | C. | 28 | D. | 29 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com