精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=$\left\{\begin{array}{l}1-|x+1|,x<1\\{x^2}-4x+2,x≥1\end{array}$,则函数g(x)=2|x|f(x)-2的零点个数为(  )个.
A.1B.2C.3D.4

分析 由2|x|f(x)-2=0,可得f(x)=21-|x|,问题转化为函数f(x)=$\left\{\begin{array}{l}1-|x+1|,x<1\\{x^2}-4x+2,x≥1\end{array}$,与h(x)=21-|x|的交点个数.作出函数的图象,可得结论.

解答 解:由2|x|f(x)-2=0,可得f(x)=21-|x|
问题转化为函数f(x)=$\left\{\begin{array}{l}1-|x+1|,x<1\\{x^2}-4x+2,x≥1\end{array}$,与h(x)=21-|x|的交点个数.
在同一坐标系中,作出两个函数的图象,
可得交点有2个,所以函数g(x)=2|x|f(x)-2的零点个数为2个,
故选:B.

点评 本题考查函数零点的判断,考查数形结合的数学思想,正确转化,作出函数的图象是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设数列{an}的通项公式an=2n-1,数列{bn}满足a1b1+a2b2+a3b3+…+anbn=$\frac{20}{9}$+($\frac{2n}{3}$-$\frac{5}{9}$)×2${\;}^{2n+{2}^{\;}}$,则数列{bn}的通项公式bn=4n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在锐角△ABC中,内角A,B,C的对边分别是a,b,c,已知$\frac{\sqrt{3}}{3}$sin2C+cos(A+B)=0.
(Ⅰ)求C;
(Ⅱ)若a=4$\sqrt{3}$sinA,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=4tan(x+$\frac{π}{6}$)cos2(x+$\frac{π}{6}$)-1.
(Ⅰ)求f(x)的定义域与最小正周期;
(Ⅱ)讨论f(x)在区间(0,$\frac{π}{3}$)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知F1、F2是椭圆C1与双曲线C2的公共焦点,点P是C1与C2的公共点,若椭圆C1的离心率e1∈($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$],∠F1PF2=$\frac{π}{2}$,则双曲线C2的离心率e2的最小值为(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求函数f(x)=x2+x在区间[x0,x0+△x]上的平均变化率,并求当x0=1,△x=0.1时的平均变化率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在正项等比数列{an}和正项等差数列{bn}中,已知a1,a2017的等比中项与b1,b2017的等差中项相等,且$\frac{1}{{b}_{1}}$+$\frac{4}{{b}_{2017}}$≤1,当a1009取得最小值时,等差数列{bn}的公差d的取值集合为(  )
A.{d|d≥$\frac{1}{672}$}B.{d|0<d<$\frac{1}{672}$}C.{$\frac{1}{672}$}D.{d|d≥$\frac{3}{2017}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x>0}\\{-{x}^{2}-4x,x≤0}\end{array}\right.$则此函数图象上关于原点对称的点有(  )
A.0对B.1对C.2对D.3对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.中心在原点的椭圆C1与双曲线C2具有相同的焦点,F1(-c,0),F2(c,0),P为C1与C2在第一象限的交点,|PF1|=|F1F2|且|PF2|=5,若椭圆C1的离心率${e_1}∈({\frac{3}{5},\frac{2}{3}})$,则双曲线的离心率e2的范围是(  )
A.$({\frac{3}{2},\frac{5}{3}})$B.$({\frac{5}{3},2})$C.(2,3)D.$({\frac{3}{2},3})$

查看答案和解析>>

同步练习册答案