精英家教网 > 高中数学 > 题目详情
9.中心在原点的椭圆C1与双曲线C2具有相同的焦点,F1(-c,0),F2(c,0),P为C1与C2在第一象限的交点,|PF1|=|F1F2|且|PF2|=5,若椭圆C1的离心率${e_1}∈({\frac{3}{5},\frac{2}{3}})$,则双曲线的离心率e2的范围是(  )
A.$({\frac{3}{2},\frac{5}{3}})$B.$({\frac{5}{3},2})$C.(2,3)D.$({\frac{3}{2},3})$

分析 设椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)(a>b>0),其离心率e1,双曲线的方程为$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(m>0,n>0),离心率为e2,由e1=$\frac{c}{a}$∈($\frac{3}{5}$,$\frac{2}{3}$),e2=$\frac{c}{m}$,由△PF1F2是以PF2为底边的等腰三角形,结合椭圆与双曲线的定义可求得m=2c-a,从而可求得答案.

解答 解:设椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
其离心率为e1
双曲线的方程为$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(m>0,n>0),其离心率为e2
|F1F2|=2c,
∵有公共焦点的椭圆与双曲线在第一象限的交点为P,
△PF1F2是以PF2为底边的等腰三角形,
∴在椭圆中,|PF1|+|PF2|=2a,而|PF1|=|F1F2|=2c,
∴|PF2|=2a-2c,①
同理,在该双曲线中,|PF2|=2c-2m;②
由①②可得m=2c-a.
∵e1=$\frac{c}{a}$∈($\frac{3}{5}$,$\frac{2}{3}$),
∴$\frac{3}{2}$<$\frac{1}{{e}_{1}}$<$\frac{5}{3}$,
又e2=$\frac{c}{m}$=$\frac{c}{2c-a}$=$\frac{{e}_{1}}{2{e}_{1}-1}$=$\frac{1}{2-\frac{1}{{e}_{1}}}$∈(2,3).
故选:C.

点评 本题主要考查椭圆与双曲线的简单性质:离心率的范围,考查等价转换的思想与运算能力,考查倒数关系的灵活应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}1-|x+1|,x<1\\{x^2}-4x+2,x≥1\end{array}$,则函数g(x)=2|x|f(x)-2的零点个数为(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.集合A={x|y=ln(1-x)},B={x|x2-2x-3≤0},全集U=A∪B,则∁U(A∩B)=(  )
A.{x|x<-1或x≥1}B.{x|1≤x≤3或x<-1}C.{x|x≤-1或x>1}D.{x|1<x≤3或x≤-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若正数a,b满足3+log2a=1+log4b=log8(a+b),则a=$\frac{1}{16}$,b=$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示的几何体是由棱台ABC-A1B1C1和棱锥D-AA1C1C拼接而成的组合体,其底面四边形ABCD是边长为2的菱形,且∠BAD=60°,BB1⊥平面ABCD,BB1=2A1B1=2.(${V_{棱台}}=\frac{1}{3}h({{S_上}+{S_下}+\sqrt{{S_上}{S_下}}})$)
(Ⅰ)求证:平面AB1C⊥平面BB1D;
(Ⅱ)求该组合体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.由曲线y=x2+1、直线y=-x+3,x轴与y轴所围成图形的面积为(  )
A.3B.$\frac{10}{3}$C.$\frac{7}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},0≤x<a}\\{{2}^{x},x≥a}\end{array}\right.$,若存在实数b,使得函数g(x)=f(x)-b有两个不同的零点,则a的取值范围是2<a<4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系中,已知圆O1:(x+a)2+y2=4,圆O2:(x-a)2+y2=4,其中常数a>2,点P是圆O1,O2外一点.
(1)若a=3,P(-1,4),过点P作斜率为k的直线l与圆O1相交,求实数k的取值范围;
(2)过点P作O1,O2的切线,切点分别为M1,M2,记△PO1M1,△PO2M2的面积分别为S1,S2,若S1=$\sqrt{a+1}$•S2,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.等比数列{an}的前n项和为Sn.已知a1=2,a4=-2,则{an}的通项公式an=2×(-1)n-1,S9=2.

查看答案和解析>>

同步练习册答案