精英家教网 > 高中数学 > 题目详情
19.等比数列{an}的前n项和为Sn.已知a1=2,a4=-2,则{an}的通项公式an=2×(-1)n-1,S9=2.

分析 求出等比数列的公比,即可求数列{an}的通项公式;结合等比数列的前n项和的定义即可得到S9

解答 解:∵a1=2,a4=-2,则a4=-2=a1q3
∴q3=-1,q=-1,
即an=2×(-1)n-1
∴a1=a3=a5=a7=a9=2,a2=a4=a6=a8=-2,
∴S9=2.
故答案是:2×(-1)n-1;2.

点评 本题主要考查等比数列的通项公式以及数列求和问题,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.中心在原点的椭圆C1与双曲线C2具有相同的焦点,F1(-c,0),F2(c,0),P为C1与C2在第一象限的交点,|PF1|=|F1F2|且|PF2|=5,若椭圆C1的离心率${e_1}∈({\frac{3}{5},\frac{2}{3}})$,则双曲线的离心率e2的范围是(  )
A.$({\frac{3}{2},\frac{5}{3}})$B.$({\frac{5}{3},2})$C.(2,3)D.$({\frac{3}{2},3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义在(0,+∞)的函数f(x)的导函数f'(x)满足x3f'(x)+8>0,且f(2)=2,则不等式$f({e^x})<\frac{4}{{{e^{2x}}}}+1$的解集为(  )
A.(-∞,2)B.(-∞,ln2)C.(0,2)D.(0,ln2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“a2=1”是“函数$f(x)=lg({\frac{2}{1-x}+a})$为奇函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,角A,B,C所对的边分别为a,b,c,且bcosC=(3a-c)cosB.D为AC边的中点,且BD=1,则△ABD面积的最大值为$\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆W:$\frac{x^2}{4}+\frac{y^2}{b^2}=1$(b>0)的一个焦点坐标为$(\sqrt{3},0)$.
(Ⅰ)求椭圆W的方程和离心率;
(Ⅱ)若椭圆W与y轴交于A,B两点(A点在B点的上方),M是椭圆上异于A,B的任意一点,过点M作MN⊥y轴于N,E为线段MN的中点,直线AE与直线y=-1交于点C,G为线段BC的中点,O为坐标原点.求∠OEG的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知h(x)=|2x-1|+m|x+3|(m>0),且h(x)的最小值是7.
(Ⅰ)求m的值;
(Ⅱ)求出当h(x)取得最小值时x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的函数f(x)=2|x-m|+1(m∈R)为偶函数.记a=f(log22),b=f(log24),c=f(2m),则a,b,c的大小关系为(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知点$P(x,y)满足\left\{\begin{array}{l}x+y≥4\\ y≤x+2\\ x≤3\end{array}\right.$,点A,B是圆x2+y2=2上的两个点,则∠APB的最大值为$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案