精英家教网 > 高中数学 > 题目详情
8.已知定义在R上的函数f(x)=2|x-m|+1(m∈R)为偶函数.记a=f(log22),b=f(log24),c=f(2m),则a,b,c的大小关系为(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

分析 由已知得m=0,f(x)=2|x|+1,从而x∈(-∞,0)时,f(x)是减函数,x∈(0,+∞)时,f(x)是增函数,由此能比较a,b,c的大小关系.

解答 解:∵定义在R上的函数f(x)=2|x-m|+1(m为实数)为偶函数,
∴m=0,f(x)=2|x|+1,
∴x∈(-∞,0)时,f(x)是减函数,x∈(0,+∞)时,f(x)是增函数,
∵a=f(log22)=f(1),b=f(log24)=f(2),c=f(2m)=f(0),
∴a,b,c的大小关系为c<a<b.
故选B.

点评 本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意偶函数性质、对数性质及运用法则合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系中,已知圆O1:(x+a)2+y2=4,圆O2:(x-a)2+y2=4,其中常数a>2,点P是圆O1,O2外一点.
(1)若a=3,P(-1,4),过点P作斜率为k的直线l与圆O1相交,求实数k的取值范围;
(2)过点P作O1,O2的切线,切点分别为M1,M2,记△PO1M1,△PO2M2的面积分别为S1,S2,若S1=$\sqrt{a+1}$•S2,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.等比数列{an}的前n项和为Sn.已知a1=2,a4=-2,则{an}的通项公式an=2×(-1)n-1,S9=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,若|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角$θ=\frac{π}{6}$,且($\overrightarrow{a}$-m$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则m=(  )
A.$\frac{1}{2}$B.1C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=xex-ax(a∈R,a为常数),e为自然对数的底数.
(Ⅰ)当f(x)>0时,求实数x的取值范围;
(Ⅱ)当a=2时,求使得f(x)+k>0成立的最小正整数k.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\frac{-2x+2}{2x-1}$,数列{an}的通项公式为${a_n}=f(\frac{n}{2017})(n∈{N^*})$,则此数列前2017项的和为-2016.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a=5log33.4,b=5log33.6,c=($\frac{1}{5}$)log30.5,则a,b,c的大小关系是(  )
A.c>a>bB.b>a>cC.a>b>cD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若z=(2+i)cosπ(i为虚数单位),则z=(  )
A.2+iB.$\frac{2-i}{5}$C.$\frac{2-i}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知平面向量$\vec a=({1,2}),\vec b=({-2,m})$,且$\vec a∥\vec b$,则$|{\vec b}|$为(  )
A.2$\sqrt{5}$B.$\sqrt{5}$C.3$\sqrt{5}$D.1

查看答案和解析>>

同步练习册答案