精英家教网 > 高中数学 > 题目详情
16.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,若|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角$θ=\frac{π}{6}$,且($\overrightarrow{a}$-m$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则m=(  )
A.$\frac{1}{2}$B.1C.$\sqrt{3}$D.2

分析 利用两个向量垂直的性质,两个向量的数量积的定义,求得m的值,可得答案.

解答 解:∵平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,若|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角$θ=\frac{π}{6}$,且($\overrightarrow{a}$-m$\overrightarrow{b}$)⊥$\overrightarrow{a}$,
∴($\overrightarrow{a}$-m$\overrightarrow{b}$)•$\overrightarrow{a}$=${\overrightarrow{a}}^{2}$-m$\overrightarrow{a}•\overrightarrow{b}$=3-m•$\sqrt{3}$•2•cos$\frac{π}{6}$=0,求得m=1,
故选:B.

点评 本题主要考查两个向量垂直的性质,两个向量的数量积的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{ln(1+x)}{x}$.
(1)试判断函数f(x)在(0,+∞)上的单调性,并说明理由;
(2)若函数f(x)在其定义域内恒有f(x)<$\frac{1-ax}{1+x}$成立,试求a的所有可能的取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“a2=1”是“函数$f(x)=lg({\frac{2}{1-x}+a})$为奇函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆W:$\frac{x^2}{4}+\frac{y^2}{b^2}=1$(b>0)的一个焦点坐标为$(\sqrt{3},0)$.
(Ⅰ)求椭圆W的方程和离心率;
(Ⅱ)若椭圆W与y轴交于A,B两点(A点在B点的上方),M是椭圆上异于A,B的任意一点,过点M作MN⊥y轴于N,E为线段MN的中点,直线AE与直线y=-1交于点C,G为线段BC的中点,O为坐标原点.求∠OEG的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知h(x)=|2x-1|+m|x+3|(m>0),且h(x)的最小值是7.
(Ⅰ)求m的值;
(Ⅱ)求出当h(x)取得最小值时x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在S市的A区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这x个分店的年收入之和.
 x(个) 2 3 4 5 6
 y(百万元) 2.5 3 4 4.5 6
(Ⅰ)该公司已经过初步判断,可用线性回归模型拟合y与x的关系,求y关于x的线性回归方程y=$\widehatbx+a$;
(Ⅱ)假设该公司在A区获得的总年利润z(单位:百万元)与x,y之间的关系为z=y-0.05x2-1.4,请结合(Ⅰ)中的线性回归方程,估算该公司应在A区开设多少个分店时,才能使A区平均每个分店的年利润最大?
参考公式:$\widehat{y}$=$\widehat{b}$x+a,$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{\;}({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的函数f(x)=2|x-m|+1(m∈R)为偶函数.记a=f(log22),b=f(log24),c=f(2m),则a,b,c的大小关系为(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知k∈Z,关于x的不等式k(x+1)>$\frac{2x}{e^x}$在(0,+∞)上恒成立,则k的最小值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)的定义域为D,若满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域为[$\frac{a}{2}$,$\frac{b}{2}$],则称f(x)为“倍缩函数”.若函数f(x)=lnx+t为“倍缩函数”,则实数t的取值范围是(  )
A.(-∞,ln2-1)B.(-∞,ln2-1]C.(1-ln2,+∞)D.[1-ln2,+∞)

查看答案和解析>>

同步练习册答案