分析 (Ⅰ)根据不等式的性质得到关于m的方程组,解出即可;
(Ⅱ)根据“=”成立的条件求出x的范围即可.
解答 解:(Ⅰ)h(x)=|2x-1|+m|x+3|=|1-2x|+|mx+3m|≥|(m-2)x+(1+3m)|,
∵h(x)的最小值是7,故$\left\{\begin{array}{l}{m-2=0}\\{|1+3m|=7}\end{array}\right.$,解得:m=2;
(Ⅱ)由(Ⅰ)得,当且仅当(1-2x)(mx+3m)≥0?(2x-1)(2x+6)≤0,
即-3≤x≤$\frac{1}{2}$时,h(x)≥|(m-2)x+(1+3m)|中的“=”成立,
故h(x)取最小值时x的范围是[-3,$\frac{1}{2}$].
点评 本题考查了绝对值不等式的性质,考查转化思想,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c>a>b | B. | b>a>c | C. | a>b>c | D. | a>c>b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,1] | B. | [0,$\sqrt{2}$] | C. | [0,2] | D. | [1,$\sqrt{2}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com