分析 (Ⅰ)求出函数的导数,通过讨论a的范围求出函数的单调区间即可;
(Ⅱ)得到x1+x2=a,x1•x2=1,则f(x1)-f(x2)=2ln$\frac{{x}_{1}}{{x}_{2}}$+(x1-x2)(x1+x2-2a)=2ln$\frac{{x}_{1}}{{x}_{2}}$+$\frac{{x}_{2}}{{x}_{1}}$-$\frac{{x}_{1}}{{x}_{2}}$,令t=$\frac{{x}_{1}}{{x}_{2}}$,则0<t<1,f(x1)-f(x2)=2lnt+$\frac{1}{t}$-t,令g(t)=2lnt+$\frac{1}{t}$-t,根据函数的单调性求出a的范围即可.
解答 解:(Ⅰ)函数f(x)的定义域是(0,+∞),
f′(x)=$\frac{2{(x}^{2}-ax+1)}{x}$,令x2-ax+1=0,则△=a2-4,
①0<a≤2时,△≤0,f′(x)≥0恒成立,
函数f(x)在(0,+∞)递增;
②a>2时,△>0,方程x2-ax+1=0有两根
x1=$\frac{a-\sqrt{{a}^{2}-4}}{2}$,x2=$\frac{a+\sqrt{{a}^{2}-4}}{2}$,且0<x1<x2,
函数f(x)在(0,x1)上f′(x)>0,
在(x1,x2)上,f′(x)<0,在(x2,+∞)上,f′(x)>0,
故函数f(x)在(0,$\frac{a-\sqrt{{a}^{2}-4}}{2}$)递增,在($\frac{a-\sqrt{{a}^{2}-4}}{2}$,$\frac{a+\sqrt{{a}^{2}-4}}{2}$)递减,在($\frac{a+\sqrt{{a}^{2}-4}}{2}$,+∞)递增;
(Ⅱ)由(Ⅰ)得f(x)在(x1,x2)上递减,x1+x2=a,x1•x2=1,
则f(x1)-f(x2)=2ln$\frac{{x}_{1}}{{x}_{2}}$+(x1-x2)(x1+x2-2a)=2ln$\frac{{x}_{1}}{{x}_{2}}$+$\frac{{x}_{2}}{{x}_{1}}$-$\frac{{x}_{1}}{{x}_{2}}$,
令t=$\frac{{x}_{1}}{{x}_{2}}$,则0<t<1,f(x1)-f(x2)=2lnt+$\frac{1}{t}$-t,
令g(t)=2lnt+$\frac{1}{t}$-t,则g′(t)=-$\frac{{(t-1)}^{2}}{t}$<0,
故g(t)在(0,1)递减且g($\frac{1}{2}$)=$\frac{3}{2}$-2ln2,
故g(t)=f(x1)-f(x2)≥$\frac{3}{2}$-2ln2=g($\frac{1}{2}$),即0<t≤$\frac{1}{2}$,
而a2=${{(x}_{1}{+x}_{2})}^{2}$=$\frac{{x}_{1}}{{x}_{2}}$+$\frac{{x}_{2}}{{x}_{1}}$+2=t+$\frac{1}{t}$+2,其中0<t≤$\frac{1}{2}$,
∵(t+$\frac{1}{t}$+2)′=1-$\frac{1}{{t}^{2}}$≤0在t∈(0,$\frac{1}{2}$]恒成立,
故a2=t+$\frac{1}{t}$+2在(0,$\frac{1}{2}$]递减,
从而a的范围是a2≥$\frac{9}{2}$,
故a≥$\frac{3}{2}$$\sqrt{2}$.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论数思想,是一道综合题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2) | B. | (-∞,ln2) | C. | (0,2) | D. | (0,ln2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com