精英家教网 > 高中数学 > 题目详情
12.在平面直角坐标系中,把位于直线y=k与直线y=l(k、l均为常数,且k<l)之间的点所组成的区域(含直线y=k,直线y=l)称为“k⊕l型带状区域”,设f(x)为二次函数,三点(-2,f(-2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型带状区域”,如果点(t,t+1)位于“-1⊕3型带状区域”,那么,函数y=|f(t)|的最大值为$\frac{5}{2}$.

分析 设出函数f(x)的解析式,求出|t的范围,用f(-2),f(2),f(0)表示出f(x)的解析式,根据不等式的性质求出其最大值即可.

解答 解:设f(x)=ax2+bx+c(a≠0),
由题意可知|f(-2)|≤2,|f(0)|≤2,|f(2)|≤2,
∵$\left\{\begin{array}{l}{f(-2)=4a-2b+c}\\{f(0)=c}\\{f(2)=4a+2b+c}\end{array}\right.$,∴$\left\{\begin{array}{l}{b=\frac{f(2)-f(-2)}{4}}\\{a=\frac{f(2)+f(-2)-2f(0)}{8}}\\{c=f(0)}\end{array}\right.$,
∵-1≤t+1≤3,∴|t|≤2,
∴|f(t)|=|$\frac{f(2)+f(-2)-2f(0)}{8}$t2+$\frac{f(2)-f(-2)}{4}$t+f(0)|
=|$\frac{{t}^{2}-2t}{8}$f(-2)+$\frac{{t}^{2}+2t}{8}$f(2)+$\frac{4-{t}^{2}}{4}$f(0)|,
≤|$\frac{{t}^{2}-2t}{4}$|+|$\frac{{t}^{2}+2t}{4}$|+|$\frac{4-{t}^{2}}{2}$|
=$\frac{1}{4}$|t|(2-t)+$\frac{1}{4}$|t|(t+2)+$\frac{1}{2}$(4-t2
=-$\frac{1}{2}$t2+|t|+2=-$\frac{1}{2}$(|t|-1)2+$\frac{5}{2}$≤$\frac{5}{2}$.
故答案为:$\frac{5}{2}$.

点评 本题考查了求函数的解析式问题,考查二次函数的性质以及不等式的性质,求函数最值问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2lnx+x2-2ax(a>0).
(I)讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)有两个极值点x1,x2(x1<x2),且f(x1)-f(x2)≥$\frac{3}{2}$-2ln2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=xex-ax(a∈R,a为常数),e为自然对数的底数.
(Ⅰ)当f(x)>0时,求实数x的取值范围;
(Ⅱ)当a=2时,求使得f(x)+k>0成立的最小正整数k.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a=5log33.4,b=5log33.6,c=($\frac{1}{5}$)log30.5,则a,b,c的大小关系是(  )
A.c>a>bB.b>a>cC.a>b>cD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)离心率为$\frac{1}{2}$,过椭圆上一点P分别作斜率为$\frac{b}{a},-\frac{b}{a}$的两条直线,这两条直线与x轴分别交于点M,N两点,且|OM|2+|ON|2=8.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线PM,PN与椭圆C的另外两个交点分别为Q,R,当点P的横坐标为1时,求△PQR的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若z=(2+i)cosπ(i为虚数单位),则z=(  )
A.2+iB.$\frac{2-i}{5}$C.$\frac{2-i}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若$sinα+3sin(\frac{π}{2}+α)=0$,则cos2α的值为(  )
A.$-\frac{3}{5}$B.$\frac{3}{5}$C.$-\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=sinx+cosx,g(x)=2cosx,动直线x=t与f(x)和g(x)的图象分别交于A、B两点,则|AB|的取值范围是(  )
A.[0,1]B.[0,$\sqrt{2}$]C.[0,2]D.[1,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.数列{an}满足an+5an+1=36n+18,n∈N*,且a1=4.
(1)写出{an}的前3项,并猜想其通项公式;
(2)用数学归纳法证明你的猜想.

查看答案和解析>>

同步练习册答案