分析 设出函数f(x)的解析式,求出|t的范围,用f(-2),f(2),f(0)表示出f(x)的解析式,根据不等式的性质求出其最大值即可.
解答 解:设f(x)=ax2+bx+c(a≠0),
由题意可知|f(-2)|≤2,|f(0)|≤2,|f(2)|≤2,
∵$\left\{\begin{array}{l}{f(-2)=4a-2b+c}\\{f(0)=c}\\{f(2)=4a+2b+c}\end{array}\right.$,∴$\left\{\begin{array}{l}{b=\frac{f(2)-f(-2)}{4}}\\{a=\frac{f(2)+f(-2)-2f(0)}{8}}\\{c=f(0)}\end{array}\right.$,
∵-1≤t+1≤3,∴|t|≤2,
∴|f(t)|=|$\frac{f(2)+f(-2)-2f(0)}{8}$t2+$\frac{f(2)-f(-2)}{4}$t+f(0)|
=|$\frac{{t}^{2}-2t}{8}$f(-2)+$\frac{{t}^{2}+2t}{8}$f(2)+$\frac{4-{t}^{2}}{4}$f(0)|,
≤|$\frac{{t}^{2}-2t}{4}$|+|$\frac{{t}^{2}+2t}{4}$|+|$\frac{4-{t}^{2}}{2}$|
=$\frac{1}{4}$|t|(2-t)+$\frac{1}{4}$|t|(t+2)+$\frac{1}{2}$(4-t2)
=-$\frac{1}{2}$t2+|t|+2=-$\frac{1}{2}$(|t|-1)2+$\frac{5}{2}$≤$\frac{5}{2}$.
故答案为:$\frac{5}{2}$.
点评 本题考查了求函数的解析式问题,考查二次函数的性质以及不等式的性质,求函数最值问题,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c>a>b | B. | b>a>c | C. | a>b>c | D. | a>c>b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2+i | B. | $\frac{2-i}{5}$ | C. | $\frac{2-i}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | $-\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,1] | B. | [0,$\sqrt{2}$] | C. | [0,2] | D. | [1,$\sqrt{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com