精英家教网 > 高中数学 > 题目详情
7.“a2=1”是“函数$f(x)=lg({\frac{2}{1-x}+a})$为奇函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 利用奇函数的图象经过原点,求得a的值,检验可得结论.

解答 解:∵函数f(x)=lg( $\frac{2}{1-x}$+a)是奇函数,
则f(0)=0,即lg(2+a)=0,则a=-1,
此时,f(x)=lg $\frac{1+x}{1-x}$,是奇函数,满足条件,
故“a2=1”是“a=-1“的必要不充分条件,
故选:B.

点评 本题主要考查充分必要条件,考查集合的包含关系以及奇函数的性质,利用了定义域包括原点的奇函数的图象经过原点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若正数a,b满足3+log2a=1+log4b=log8(a+b),则a=$\frac{1}{16}$,b=$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系中,已知圆O1:(x+a)2+y2=4,圆O2:(x-a)2+y2=4,其中常数a>2,点P是圆O1,O2外一点.
(1)若a=3,P(-1,4),过点P作斜率为k的直线l与圆O1相交,求实数k的取值范围;
(2)过点P作O1,O2的切线,切点分别为M1,M2,记△PO1M1,△PO2M2的面积分别为S1,S2,若S1=$\sqrt{a+1}$•S2,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.以椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上一动点M为圆心,1为半径作圆M,过原点O作圆M的两条切线,A,B为切点,若∠AOB=θ,θ∈[$\frac{π}{3}$,$\frac{π}{2}$],则椭圆C的离心率为(  )
A.$\frac{\sqrt{5}}{4}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2lnx+x2-2ax(a>0).
(I)讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)有两个极值点x1,x2(x1<x2),且f(x1)-f(x2)≥$\frac{3}{2}$-2ln2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.以下茎叶图记录了某学习小组六名同学在一次数学测试中的成绩(单位:分),已知该组数据的中位数为85,则x的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.等比数列{an}的前n项和为Sn.已知a1=2,a4=-2,则{an}的通项公式an=2×(-1)n-1,S9=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,若|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角$θ=\frac{π}{6}$,且($\overrightarrow{a}$-m$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则m=(  )
A.$\frac{1}{2}$B.1C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若z=(2+i)cosπ(i为虚数单位),则z=(  )
A.2+iB.$\frac{2-i}{5}$C.$\frac{2-i}{3}$D.1

查看答案和解析>>

同步练习册答案