分析 把(x+$\frac{1}{x}$)9按照二项式定理展开,可得(x2-4)(x+$\frac{1}{x}$)9的展开式中x3的系数.
解答 解:∵(x2-4)(x+$\frac{1}{x}$)9=(x2-4)(${C}_{9}^{0}$•x9+${C}_{9}^{1}$•x7+${C}_{9}^{2}$•x5+…+${C}_{9}^{8}$•x-7+${C}_{9}^{9}$•x-9),
故它的展开式中x3的系数为${C}_{9}^{4}$+(-4)•${C}_{9}^{3}$=126-336=-210,
故答案为:-210.
点评 本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9-2\sqrt{3}}{4}$ | B. | $\frac{11-3\sqrt{3}}{4}$ | C. | $\frac{13-4\sqrt{3}}{4}$ | D. | $\frac{15-5\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(-\frac{1}{2},0)$ | B. | $(0,\frac{ln2+1}{4})$ | C. | $(\frac{1}{2},1)$ | D. | $(\frac{ln2+1}{4},\frac{1}{2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({0,1+\frac{1}{e}})$ | B. | $({1,1+\frac{1}{e}})$ | C. | (1,1+e) | D. | (1,1+e2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com