| A. | $(-\frac{1}{2},0)$ | B. | $(0,\frac{ln2+1}{4})$ | C. | $(\frac{1}{2},1)$ | D. | $(\frac{ln2+1}{4},\frac{1}{2})$ |
分析 方法一:求导f′(x)=lnx-2ax+1,由关于x的方程a=$\frac{lnx+1}{2x}$在区间(0,+∞)由两个不相等的实根,构造辅助函数,根据函数单调性即可求得a取值范围;
方法二:由题意,关于x的方程2ax=lnx+1在区间(0,2)由两个不相等的实根,则y=2ax与y=lnx+1有两个交点,根据导数的几何意义,即可求得a的取值范围.
解答 解:方法一:f(x)=x(lnx-ax),求导f′(x)=lnx-2ax+1,
由题意,关于x的方程a=$\frac{lnx+1}{2x}$在区间(0,+∞)由两个不相等的实根,
令h(x)=$\frac{lnx+1}{2x}$,h′(x)=-$\frac{2lnx}{4{x}^{2}}$,
当x∈(0,1)时,h(x)单调递增,当x∈(1,+∞)单调递减,
当x→+∞时,h(x)→0,
由图象可知:函数f(x)=x(lnx-ax),在(0,2)上由两个极值,
只需$\frac{ln2+1}{4}$<a<$\frac{1}{2}$,
故D.![]()
方法二:f(x)=x(lnx-ax),求导f′(x)=lnx-2ax+1,
由题意,关于x的方程2ax=lnx+1在区间(0,2)由两个不相等的实根,
则y=2ax与y=lnx+1有两个交点,
由直线y=lnx+1,求导y′=$\frac{1}{x}$,
设切点(x0,y0),$\frac{ln{x}_{0}+1}{{x}_{0}}$=$\frac{1}{{x}_{0}}$,解得:x0=1,
∴切线的斜率k=1,
则2a=1,a=$\frac{1}{2}$,
则当x=2,则直线斜率k=$\frac{ln2+1}{2}$,
则a=$\frac{ln2+1}{4}$,
∴a的取值范围($\frac{ln2+1}{4}$,$\frac{1}{2}$),
故选D.![]()
点评 本题考查导数的综合应用,考查导数与函数单调性及应用,考查数形结合思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{3}{5}$ | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 日需求量 | 3 | 4 | 5 | 6 | 7 |
| 频数 | 2 | 3 | 15 | 6 | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{12}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com