精英家教网 > 高中数学 > 题目详情
7.已知边长为2的正三角形ABC,P,M满足|AP|=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,则$\overrightarrow{BM}$2的最小值是(  )
A.$\frac{9-2\sqrt{3}}{4}$B.$\frac{11-3\sqrt{3}}{4}$C.$\frac{13-4\sqrt{3}}{4}$D.$\frac{15-5\sqrt{3}}{4}$

分析 画出图形,建立坐标系,求出P的轨迹方程,由中点坐标公式和代入法求得M的轨迹方程,然后利用圆的性质|$\overrightarrow{BM}$2的最小值.

解答 解:由题△ABC为边长为2的正三角形,
如图建立平面坐标系,
可得A(0,$\sqrt{3}$),B(-1,0),C(1,0),
由|$\overrightarrow{AP}$|=1得点P的轨迹方程为x2+(y-$\sqrt{3}$)2=1,
设M(x0,y0),由$\overrightarrow{PM}$=$\overrightarrow{MC}$,得M为线段PC的中点,
则P(2x0-1,2y0),
代入①式得M的轨迹方程为(2x0-1)2+(2y0-$\sqrt{3}$)2=1,
即为((x0-$\frac{1}{2}$)2+(y0-$\frac{\sqrt{3}}{2}$)2=$\frac{1}{4}$,
记圆心为N($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),半径r=$\frac{1}{2}$,
|$\overrightarrow{BM}$|min=|$\overrightarrow{BN}$|-r=$\sqrt{(\frac{1}{2}+1)^{2}+(\frac{\sqrt{3}}{2})^{2}}$-$\frac{1}{2}$=$\sqrt{3}$-$\frac{1}{2}$,
则$\overrightarrow{BM}$2的最小值是$\frac{13-4\sqrt{3}}{4}$.
故选:C.

点评 本题考查向量平方的最小值的求法,圆方程的运用,向量的坐标运算,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.阅读右边的程序框图,运行相应的程序,输出k的值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,将一块半径为2的半圆形纸板切割成等腰梯形的形状,下底AB是半圆的直径,上底CD的端点在半圆上,则所得梯形的最大面积为3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知m∈R,若点M(x,y)为直线l1:my=-x和l2:mx=y+m-3的交点,l1和l2分别过定点A和B,则|MA|•|MB|的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知实数x,y满足约束条件$\left\{\begin{array}{l}{x≥1,}&{\;}\\{x+y≤4,}&{\;}\\{x+by-1≤0}&{\;}\end{array}\right.$且目标函数z=x+2y最小值为1,则实数b的取值范围是(  )
A.(-∞,0)B.(-∞,-$\frac{1}{2}$]C.[-$\frac{1}{2}$,0)D.(-∞,0)∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=ax2+bx+c(a>b>c),且f(1)=0,若函数f(x)的导函数图象与函数f(x)的图象交于A,B两点,C,D是点A,B在x轴上的投影,则线段|CD|长的取值范围为($\sqrt{5}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a>0,b>0,c>0函数f(x)=|x+a|+|x-b|+c.
(1)当a=b=c=1时,求不等式f(x)>5的解集;
(2)若f(x)的最小值为5时,求a+b+c的值,并求$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a>0,x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-3)}\end{array}\right.$,若z=2x+y的最小值为1,则a=(  )
A.1B.$\frac{3}{5}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.(x2-4)(x+$\frac{1}{x}$)9的展开式中x3的系数为-210.(用数字填写答案)

查看答案和解析>>

同步练习册答案