精英家教网 > 高中数学 > 题目详情
2.已知实数x,y满足约束条件$\left\{\begin{array}{l}{x≥1,}&{\;}\\{x+y≤4,}&{\;}\\{x+by-1≤0}&{\;}\end{array}\right.$且目标函数z=x+2y最小值为1,则实数b的取值范围是(  )
A.(-∞,0)B.(-∞,-$\frac{1}{2}$]C.[-$\frac{1}{2}$,0)D.(-∞,0)∪[2,+∞)

分析 画出约束条件的可行域,利用目标函数的最值判断最优解,利用直线的斜率求解即可.

解答 解:实数x,y满足约束条件$\left\{\begin{array}{l}{x≥1,}&{\;}\\{x+y≤4,}&{\;}\\{x+by-1≤0}&{\;}\end{array}\right.$的可行域如图:

且目标函数z=x+2y最小值为1,可知目标函数经过可行域的A时,取得最小值,
由$\left\{\begin{array}{l}{x=1}\\{x+2y=1}\end{array}\right.$解得A(1,0),A在直线x+by-1=0上,可得-$\frac{1}{b}$$≥-\frac{1}{2}$,解得b≥2或b<0.
故选:D.

点评 本题考查线性规划的简单应用,直线的斜率的关系是解题的关键,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥S-ABCD中,四边形ABCD是菱形,∠BAD=60°,AC交BC于点O,△SBD是边长为2的正三角形,SA=$\sqrt{3}$,E,F分别是CD,SB的中点.
(Ⅰ)求证:EF∥平面SAD;
(Ⅱ)求证:BD⊥平面SAC;
(Ⅲ)求直线AB与平面SBD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=$\sqrt{|x-1|+|x-2|-a}$.
(1)当a=5时,求函数f(x)的定义域;
(2)若函数f(x)的定义域为R,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,已知矩形OABC中,OA=2,OC=1,OD=3,若P在△BCD中(包括边界),且$\overrightarrow{OP}$=α$\overrightarrow{OC}$+$\frac{1}{2}$β$\overrightarrow{OA}$,则α+$\frac{3}{2}$β的最大值为(  )
A.$\frac{3}{2}$B.$\frac{5}{2}$C.$\frac{9}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,P-ABD和Q-BCD为两个全等的正棱锥,且A,B,C,D四点共面,其中AB=1,∠APB=90°.
(Ⅰ)求证:BD⊥平面APQ;
(Ⅱ)求直线PB与平面PDQ所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知边长为2的正三角形ABC,P,M满足|AP|=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,则$\overrightarrow{BM}$2的最小值是(  )
A.$\frac{9-2\sqrt{3}}{4}$B.$\frac{11-3\sqrt{3}}{4}$C.$\frac{13-4\sqrt{3}}{4}$D.$\frac{15-5\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960.
(1)求an与bn
(2)证明:$\frac{1}{S1}$+$\frac{1}{S2}$+…+$\frac{1}{Sn}$<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e为自然对数的底数.|x-a|≥f(x)恒成立,求实数a的取值范围.
(1)若函数f(x)在点(1,f(1))处的切线方程是y=(e-1)x-1,求实数a及b的值;
(2)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.以下茎叶图记录了甲、乙两组各六名学生在一次数学测试中的成绩(单位:分),规定85分以上(含85分)为优秀,现分别从甲、乙两组中随机选取一名同学的数学成绩,则两人成绩都为优秀的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案