精英家教网 > 高中数学 > 题目详情
13.设函数f(x)=$\sqrt{|x-1|+|x-2|-a}$.
(1)当a=5时,求函数f(x)的定义域;
(2)若函数f(x)的定义域为R,试求a的取值范围.

分析 (1)根据二次根式的性质得到|x-1|+|x-2|-5≥0,解绝对值不等式求出函数的定义域即可;(2)问题转化为a≤|x-1|+|x-2|恒成立,根据绝对值的性质求出a的范围即可.

解答 解:(1)当a=5时,f(x)=$\sqrt{|x-1|+|x-2|-5}$,
由|x-1|+|x-2|-5≥0,
得$\left\{\begin{array}{l}{x≥2}\\{2x-8≥0}\end{array}\right.$或$\left\{\begin{array}{l}{1≤x<2}\\{-4≥0}\end{array}\right.$或$\left\{\begin{array}{l}{x<1}\\{-2-2x≥0}\end{array}\right.$,
解得:x≥4或x≤-1,
即函数f(x)的定义域为{x|x≤-1或x≥4}.
(2)由题可知|x-1|+|x-2|-a≥0恒成立,
即a≤|x-1|+|x-2|恒成立,
而|x-1|+|x-2|≥|(x-1)+(2-x)|=1,
所以a≤1,即a的取值范围为(-∞,1].

点评 本题考查了求函数的定义域问题,考查解绝对值不等式问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知实数x,y满足$\left\{\begin{array}{l}2x+y-4≥0\\ x-y-1≤0\\ y≤3\end{array}\right.$,则z=x-3y的最大值是$-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线y=x+3与抛物线x2=4y所围成的封闭图形的面积等于$\frac{64}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在正方体ABCD-A′B′C′D′中,M,N分别是DD′,AD的中点,求异面直线MM与BD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.(1+i)2014+(1-i)2014的值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,将一块半径为2的半圆形纸板切割成等腰梯形的形状,下底AB是半圆的直径,上底CD的端点在半圆上,则所得梯形的最大面积为3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.(x+$\frac{1}{x}$-2)3展开式中的常数项为(  )
A.-8B.-12C.-20D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知实数x,y满足约束条件$\left\{\begin{array}{l}{x≥1,}&{\;}\\{x+y≤4,}&{\;}\\{x+by-1≤0}&{\;}\end{array}\right.$且目标函数z=x+2y最小值为1,则实数b的取值范围是(  )
A.(-∞,0)B.(-∞,-$\frac{1}{2}$]C.[-$\frac{1}{2}$,0)D.(-∞,0)∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.2016年9月20日在乌鲁木齐隆重开幕的第五届中国-亚欧博览会,其展览规模为历届之最.按照日程安排,22日至25日为公众开放日.某农产品经销商决定在公众开放日开始每天以50元购进农产品若干件,以80元一件销售;若供大于求,剩余农产品当天以40元一件全部退回;若供不应求,则立即从其他地方以60元一件调剂.
(1)若农产品经销商一天购进农产品5件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N*)的函数解析式;
(2)农产品经销商记录了30天农产品的日需求量n(单位:件)整理得表:
日需求量34567
频数231564
若农产品经销商一天购进5件农产品,以30天记录的各需求量发生的频率作为概率,X表示当天的利润(单位:元),求X的分布列与数学期望.

查看答案和解析>>

同步练习册答案