精英家教网 > 高中数学 > 题目详情
16.直线y=x+3与抛物线x2=4y所围成的封闭图形的面积等于$\frac{64}{3}$.

分析 本题考查的知识点是定积分的几何意义,首先我们要联立两个曲线的方程,判断他们的交点,以确定积分公式中x的取值范围,再根据定积分的几何意义,得到所求图形的面积.

解答 解:由直线y=x+3与抛物线x2=4y,联立解得,x1=-2,x2=6.
故所求图形的面积为S=∫-26(x+3-$\frac{1}{4}$x2)dx
=($\frac{1}{2}{x}^{2}$+3x-$\frac{1}{12}{x}^{3}$)|-26=$\frac{64}{3}$,
故答案为:$\frac{64}{3}$.

点评 本题考查定积分的运用,解题的关键是确定积分区间与被积函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$与抛物线y2=8x有一个公共的焦点F.设这两曲线的一个交点为P,若|PF|=5,则点P的横坐标是3;该双曲线的渐近线方程为y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知点P($\sqrt{3}$,$\frac{1}{2}$)在椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,F为右焦点,PF垂直于x轴,A,B,C,D为椭圆上四个动点,且AC,BD交于原点O.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设A(x1,y1),B(x2,y2),满足$\frac{{{y}_{1}y}_{2}}{\overrightarrow{OA}•\overrightarrow{OB}}$=$\frac{1}{5}$,判断kAB+kBC的值是否为定值,若是,求出此定值,并求出四边形ABCD面积的最大值,否则请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥S-ABCD中,四边形ABCD是菱形,∠BAD=60°,AC交BC于点O,△SBD是边长为2的正三角形,SA=$\sqrt{3}$,E,F分别是CD,SB的中点.
(Ⅰ)求证:EF∥平面SAD;
(Ⅱ)求证:BD⊥平面SAC;
(Ⅲ)求直线AB与平面SBD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.△ABC的内角A,B,C的对边分别是a,b,c,若a2=(b+c)2-4,△ABC的面积为$\sqrt{3}$,则A等于(  )
A.30°B.60°C.150°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱锥A-BCD中,顶点A在底面BCD上的射影O在棱BD上,AB=AD=$\sqrt{2}$,BC=BD=2,∠CBD=90°,E为CD的中点.
(Ⅰ)求证:AD⊥平面ABC;
(Ⅱ)求直线AC与平面ABE所成角的正弦值;
(Ⅲ)求二面角B-AE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某校高三年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中男生的人数.
(Ⅰ)请列出X的分布列并求数学期望;
(Ⅱ)根据所列的分布列求选出的4人中至少有3名男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=$\sqrt{|x-1|+|x-2|-a}$.
(1)当a=5时,求函数f(x)的定义域;
(2)若函数f(x)的定义域为R,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960.
(1)求an与bn
(2)证明:$\frac{1}{S1}$+$\frac{1}{S2}$+…+$\frac{1}{Sn}$<$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案