精英家教网 > 高中数学 > 题目详情
6.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$与抛物线y2=8x有一个公共的焦点F.设这两曲线的一个交点为P,若|PF|=5,则点P的横坐标是3;该双曲线的渐近线方程为y=±$\sqrt{3}$x.

分析 求出抛物线的焦点和准线方程,运用抛物线的定义,结合条件可得P的横坐标,进而得到P的坐标,代入双曲线的方程和a,b,c的关系,解方程可得a,b,即可得到所求双曲线的渐近线方程.

解答 解:抛物线y2=8x的焦点为(2,0),
即有双曲线的右焦点为(2,0),即c=2,
a2+b2=4,①
又抛物线的准线方程为x=-2,
由抛物线的定义可得|PF|=xP+2=5,
可得xP=3,
则P(3,$±2\sqrt{6}$),
代入双曲线的方程可得$\frac{9}{{a}^{2}}$-$\frac{24}{{b}^{2}}$=1,②
由①②解得a=1,b=$\sqrt{3}$,
则双曲线的渐近线方程为y=±$\frac{b}{a}$x,
即为y=±$\sqrt{3}$x.
故答案为:3,y=±$\sqrt{3}$x.

点评 本题考查抛物线的定义和方程的运用,考查双曲线的方程和性质,主要是渐近线方程的求法,注意运用方程思想,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知集合A={-1,0,1,2,3},B={x|x<2},则A∩B=(  )
A.{-1,0,1}B.{0,1,2}C.{0,1,2,3}D.{-1,0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)=lnx+$\frac{1}{x}-\frac{1}{2}$,g(x)=ex-$\frac{1}{2}{x^2}-ax-\frac{1}{2}{a^2}$(e是自然对数的底数,a∈R).
(Ⅰ)求证:|f(x)|≥-(x-1)2+$\frac{1}{2}$;
(Ⅱ)已知[x]表示不超过x的最大整数,如[1.9]=1,[-2.1]=-3,若对任意x1≥0,都存在x2>0,使得g(x1)≥[f(x2)]成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.双曲线$\frac{x^2}{3}-\frac{y^2}{6}=1$的渐近线方程是y=±$\sqrt{2}$x,离心率是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆W:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的上下顶点分别为A,B,且点B(0,-1).F1,F2分别为椭圆W的左、右焦点,且∠F1BF2=120°.
(Ⅰ)求椭圆W的标准方程;
(Ⅱ)点M是椭圆上异于A,B的任意一点,过点M作MN⊥y轴于N,E为线段MN的中点.直线AE与直线y=-1交于点C,G为线段BC的中点,O为坐标原点.求∠OEG的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在直角坐标系xOy中,直线l过抛物线y2=4x的焦点F,且与该抛物线相交于A,B两点,其中点A在x轴上方.若直线l的倾斜角为60°,则|OA|=$\sqrt{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.现从甲、乙两个品牌共9个不同的空气净化器中选出3个分别测试A、B、C三项指标,若取出的3个空气净化器中既有甲品牌又有乙品牌的概率为$\frac{5}{6}$,那么9个空气净化器中甲、乙品牌个数分布可能是(  )
A.甲品牌1个,乙品牌8个B.甲品牌2个,乙品牌7个
C.甲品牌3个,乙品牌6个D.甲品牌4个,乙品牌5个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知实数x,y满足$\left\{\begin{array}{l}2x+y-4≥0\\ x-y-1≤0\\ y≤3\end{array}\right.$,则z=x-3y的最大值是$-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线y=x+3与抛物线x2=4y所围成的封闭图形的面积等于$\frac{64}{3}$.

查看答案和解析>>

同步练习册答案