精英家教网 > 高中数学 > 题目详情
18.现从甲、乙两个品牌共9个不同的空气净化器中选出3个分别测试A、B、C三项指标,若取出的3个空气净化器中既有甲品牌又有乙品牌的概率为$\frac{5}{6}$,那么9个空气净化器中甲、乙品牌个数分布可能是(  )
A.甲品牌1个,乙品牌8个B.甲品牌2个,乙品牌7个
C.甲品牌3个,乙品牌6个D.甲品牌4个,乙品牌5个

分析 设9个空气净化器中甲、乙品牌个数分别为x,9-x.$\frac{{∁}_{x}^{1}{∁}_{9-x}^{2}+{∁}_{x}^{2}{∁}_{9-x}^{1}}{{∁}_{9}^{3}}$=$\frac{5}{6}$,化简解出即可得出.

解答 解:设9个空气净化器中甲、乙品牌个数分别为x,9-x.
$\frac{{∁}_{x}^{1}{∁}_{9-x}^{2}+{∁}_{x}^{2}{∁}_{9-x}^{1}}{{∁}_{9}^{3}}$=$\frac{5}{6}$,化为:x(8-x)(9-x)+x(x-1)(9-x)=7×5×4,化为x(9-x)=20,
解得x=5或4.
因此9个空气净化器中甲、乙品牌个数分别为5,4;或4,5.
只有D有可能.
故选:D.

点评 本题考查了排列组合的计算公式、古典概率计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.函数f(x)=Asin(ωx+φ)(ω>0,$|φ|<\frac{π}{2}$)的部分图象如图所示,将函数f(x)的图象向右平移$\frac{7π}{24}$个单位后得到函数g(x)的图象,若函数g(x)在区间$[{-\frac{π}{3},θ}]$($θ>-\frac{π}{3}$)上的值域为[-1,2],则θ=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.公差不为零的等差数列{an}的前n项和为Sn.若a4是a3与a7的等比中项,S8=16,则S10等于(  )
A.18B.24C.30D.60

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$与抛物线y2=8x有一个公共的焦点F.设这两曲线的一个交点为P,若|PF|=5,则点P的横坐标是3;该双曲线的渐近线方程为y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在平面直角坐标系xOy中.点M不与点O重合,称射线OM与圆x2+y2=1的交点N为点M的“中心投影点“.
(1)点M(1,$\sqrt{3}$)的“中心投影点”为($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)
(2)曲线x2$-\frac{{y}^{2}}{3}=1$上所有点的“中心投影点”构成的曲线的长度是$\frac{4π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.企业需为员工缴纳社会保险,缴费标准是根据职工本人上一年度月平均工资(单位:元)的8%缴纳,某企业员工甲在2010年至2016年各年中每月所缴纳的养老保险数额y(单位:元)与年份序号t的统计如表:
 年份 20102011 2012 2013 2014 2015 2016 
 t 1 2 3 4 5 6 7
 y 270 330 390 450 490 540 610
(1)求y关于t的线性回归方程$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$;
(2)按照这种变化趋势,利用(1)中回归方程,预测2017年该员工每月的平均工资(精确到0.1).
参考公式和数据:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$,$\sum_{i=1}^{7}$tiyi=13860,$\sum_{i=1}^{7}$ti2=140.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设{an}是由正数组成的等比数列,Sn是{an}的前n项和.已知a2a4=16,S3=28,则a1a2…an最大时,n的值为3或4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知点P($\sqrt{3}$,$\frac{1}{2}$)在椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,F为右焦点,PF垂直于x轴,A,B,C,D为椭圆上四个动点,且AC,BD交于原点O.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设A(x1,y1),B(x2,y2),满足$\frac{{{y}_{1}y}_{2}}{\overrightarrow{OA}•\overrightarrow{OB}}$=$\frac{1}{5}$,判断kAB+kBC的值是否为定值,若是,求出此定值,并求出四边形ABCD面积的最大值,否则请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某校高三年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中男生的人数.
(Ⅰ)请列出X的分布列并求数学期望;
(Ⅱ)根据所列的分布列求选出的4人中至少有3名男生的概率.

查看答案和解析>>

同步练习册答案