分析 由题意列式求出等比数列的首项和公比,求出等比数列的通项公式,代入a1a2…an,然后结合二次函数求值得答案.
解答 解:∵{an}是由正数组成的等比数列,Sn是{an}的前n项和.a2a4=16,S3=28,
∴$\left\{\begin{array}{l}{{a}_{1}q•{a}_{1}{q}^{3}=16}\\{\frac{{a}_{1}(1-{q}^{3})}{1-q}=28}\\{q>0}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=8}\\{q=\frac{1}{2}}\end{array}\right.$.
∴${a}_{n}=8•(\frac{1}{2})^{n-1}={2}^{4-n}$.
则a1a2…an=2(4-1)+(4-2)+…+(4-n)=${2}^{-\frac{{n}^{2}}{2}+\frac{7n}{2}}$.
∴当n=3或n=4时,a1a2…an取最大值.
故答案为:3或4.
点评 本题考查等比数列的通项公式,考查等差数列的前n项和,是基础的计算题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 甲品牌1个,乙品牌8个 | B. | 甲品牌2个,乙品牌7个 | ||
| C. | 甲品牌3个,乙品牌6个 | D. | 甲品牌4个,乙品牌5个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | d1+d2+R | B. | d2-d1+2R | C. | d2+d1-2R | D. | d1+d2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com